精英家教网 > 高中数学 > 题目详情
2.$\sqrt{2}$sin($\frac{π}{4}$-x)+$\sqrt{6}$sin($\frac{π}{4}$+x)的化简结果是(  )
A.2$\sqrt{2}$sin($\frac{5π}{12}$+x)B.2$\sqrt{2}$sin(x-$\frac{5π}{12}$)C.2$\sqrt{2}$sin($\frac{7π}{12}$+x)D.2$\sqrt{2}$sin(x-$\frac{7π}{12}$)

分析 根据诱导公式和两角和差的正弦公式即可化简.

解答 解:$\sqrt{2}$sin($\frac{π}{4}$-x)+$\sqrt{6}$sin($\frac{π}{4}$+x),
=$\sqrt{2}$cos($\frac{π}{4}$+x)+$\sqrt{6}$sin($\frac{π}{4}$+x),
=2$\sqrt{2}$[$\frac{1}{2}$cos($\frac{π}{4}$+x)+$\frac{\sqrt{3}}{2}$sin($\frac{π}{4}$+x)],
=2$\sqrt{2}$sin($\frac{π}{4}$+x+$\frac{π}{6}$),
=2$\sqrt{2}$sin(x+$\frac{5π}{12}$),
故选:A.

点评 本题考查同角三角函数的基本关系的应用,三角函数式的化简,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知全集U=R,A={x|-3≤x≤1},B={x|-1<x<3},
求A∪B,、A∩B,CUA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正四棱锥S-ABCD的高为$\sqrt{3}$,侧棱长为$\sqrt{7}$.
(1)求侧面上的斜高;
(2)求一个侧面的面积;
(3)求底面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线l的方向向量为$\overrightarrow{a}$,平面α内两共点向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,下列关系中能表示l∥α的是(  )
A.$\overrightarrow{a}$=$\overrightarrow{OA}$B.$\overrightarrow{a}$=k$\overrightarrow{OB}$C.$\overrightarrow{a}$=p$\overrightarrow{OA}$+λ$\overrightarrow{OB}$D.以上均不能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=x2+ax+2b的一个零点在(0,1)内,另一个零点在(1,2)内.
(1)在平面直角坐标系中,画出点(a,b)构成的平面区域;
(2)求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(3x-2)=x-1(x∈[0,2]),函数g(x)=f(x-2)+3.
(1)求函数y=f(x)与y=g(x)的解析式;
(2)设h(x)=[g(x)]2+g(x2),试求函数y=h(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设f(θ)=$\frac{2co{s}^{3}θ-co{s}^{2}(2π-θ)+sin(\frac{π}{2}+θ)-2}{2+2co{s}^{2}(π+θ)+cos(-θ)}$,求f($\frac{π}{3}$)的值.(提示:立方差公式:a3-b3=(a-b)•(a2+ab+b2)).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的三个顶点为A(1,1),B(-1,-1),(2+$\sqrt{3}$,-2-$\sqrt{3}$),求三角形的三边所在直线的斜率及倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某单位用铁丝制作如图所示框架,框架的下部是边长分别为x、y(单位:米)的矩形,上部是一个半圆形,要求框架所围成的总面积为8m2
(1)将y表示成x的函数,并求定义域;
(2)问x、y分别为多少时用料最省?(精确到0.001m).

查看答案和解析>>

同步练习册答案