精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
a
x
(a∈
R),g(x)=lnx
(1)求函数F(x)=f(x)+g(x)的单调区间;
(2)若关于x的方程
g(x)
x
=x•[f(x)-2e]
(e为自然对数的底数)只有一个实数根,求a的值.
函数F(x)=f(x)+g(x)=x+
a
x
+lnx
的定义域为(0,+∞).
F(x)=1-
a
x2
+
1
x
=
x2+x-a
x2

①当△=1+4a≤0,即a≤-
1
4
时,得x2+x-a≥0,则F′(x)≥0.
∴函数F(x)在(0,+∞)上单调递增.(2分)
②当△=1+4a>0,即a>-
1
4
时,令F′(x)=0,得x2+x-a=0,
解得x1=
-1-
1+4a
2
<0,x2=
-1+
1+4a
2

(ⅰ) 若-
1
4
<a≤0
,则x2=
-1+
1+4a
2
≤0

∵x∈(0,+∞),
∴F′(x)>0,
∴函数F(x)在(0,+∞)上单调递增.(4分)
(ⅱ)若a>0,则x∈(0,
-1+
1+4a
2
)
时,F′(x)<0;
x∈(
-1+
1+4a
2
,+∞)
时,F′(x)>0,
∴函数F(x)在区间(0,
-1+
1+4a
2
)
上单调递减,
在区间(
-1+
1+4a
2
,+∞)
上单调递增.
综上所述,当a≤0时,函数F(x)的单调递增区间为(0,+∞);(6分)
当a>0时,函数F(x)的单调递减区间为(0,
-1+
1+4a
2
)

单调递增区间为(
-1+
1+4a
2
,+∞)
.(8分)
(2)令h(x)=
lnx
x
,则h(x)=
1-lnx
x2

令h′(x)=0,得x=e.
当0<x<e时,h′(x)>0;
 当x>e时,h′(x)<0.
∴函数h(x)在区间(0,e)上单调递增,
在区间(e,+∞)上单调递减.
∴当x=e时,函数h(x)取得最大值,其值为h(e)=
1
e
.(10分)
而函数m(x)=x2-2ex+a=(x-e)2+a-e2
当x=e时,函数m(x)取得最小值,其值为m(e)=a-e2.(12分)
∴当a-e2=
1
e
,即a=e2+
1
e
时,
方程
g(x)
x2
=f(x)-2e
只有一个根.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案