精英家教网 > 高中数学 > 题目详情
在△ABC中,A=45°,a=2,c=
6
,C=60°,
(Ⅰ)求△ABC的面积;
(Ⅱ)求
BA
BC
考点:正弦定理,平面向量数量积的运算
专题:计算题,解三角形,平面向量及应用
分析:(Ⅰ)由内角和定理,求得B,再由三角形的面积公式即可得到面积;
(Ⅱ)由于a=2,c=
6
,B=75°,运用平面向量的数量积的定义,结合三角函数值,即可得到.
解答: 解:(Ⅰ)在△ABC中,A=45°,C=60°,
则B=75°,△ABC的面积为
1
2
acsinB=
1
2
×2×
6
×sin75°=
6
×
6
+
2
4
=
3+
3
2

(Ⅱ)由于a=2,c=
6
,B=75°,
BA
BC
=cacosB=2
6
cos75°=2
6
×
6
-
2
4
=3-
3
点评:本题考查三角形的内角和定理和三角形的面积公式,同时考查平面向量的数量积的定义,考查计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x轴上有一列点P1,P2,P3,…,Pn,…,当n≥2时,点Pn是把线段Pn-1Pn+1作n等分的分点中最靠近Pn-1的点,设线段P1P2,P2P3,…,PnPn+1…的长度分别为a1,a2,a3,…,an…,其中a1=1.
(Ⅰ)写出a2,a3,a4
(Ⅱ)证明:
1
a1
+
1
a2
+…+
1
an
3 (n∈N*)

(Ⅲ)设点Mn(n,
1
an
)(n>2,n∈N*),在这些点中是否存在两个点同时在函数y=
k
(x-1)2
 
(k>0)
的图象上,如果存在,求出点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义[-1,1]上的增函数,求不等式f(x-1)<f(1-3x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z1,z2为共轭复数,且z1z2+(z1+z2)i=4-2i.求复数z1及它的模|z1|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2,1),
b
=(3,4).求
a
+
b
a
-
b
,3
a
+4
b
的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在(0,+∞)上的函数f(x)=
x+
1
x
([x]+1)([
1
x
]+1)
,其中[x]表示不小于x的最小整数,如[2]=2,[0.3]=1,[2.3]=3.
(1)求f(π)的值,其中π为圆周率;
(2)若在区间(2,3]上存在x,使得f(x)≤k成立,求实数k的取值范围;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简:
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11π
2
-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)

(2)如图,ABCD是一个梯形,AB∥CD,且AB=2CD,M、N分别是DC和AB的中点,已知AB=
a
,AD=
b
,试用
a
b
表示BC和MN.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(Ⅰ)求证:EF∥平面ABC1D1
(Ⅱ)求三棱锥V C-B1FE的体积;
(Ⅲ)求二面角E-CF-B1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边与单位圆的交点坐标为(
1
2
3
2
  ),则cosα=
 

查看答案和解析>>

同步练习册答案