【题目】已知是抛物线上一点, 到直线的距离为, 到的准线的距离为,且的最小值为.
(Ⅰ)求抛物线的方程;
(Ⅱ)直线交于点,直线交于点,线段的中点分别为,若,直线的斜率为,求证:直线恒过定点.
科目:高中数学 来源: 题型:
【题目】已知圆C经过点A(1,3)、B(2,2),并且直线m:3x﹣2y=0平分圆C.
(1)求圆C的方程;
(2)若过点D(0,1),且斜率为k的直线l与圆C有两个不同的交点M、N.
(Ⅰ)求实数k的取值范围;
(Ⅱ)若 =12,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数f(x)=sin(2x+φ)(|φ|< )的图象上的所有点向左平移 个单位长度,得到函数y=g(x)的图象,且g(﹣x)=g(x),则( )
A.y=g(x)在(0, )单调递增,其图象关于直线x= 对称
B.y=g(x)在(0, )单调递增,其图象关于直线x= 对称
C.y=g(x)在(0, )单调递减,其图象关于直线x= 对称
D.y=g(x)在(0, )单调递减,其图象关于直线x= 对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,PA= ,AB=1.AD=2.∠BAD=120°,E,F,G,H分别是BC,PB,PC,AD的中点.
(Ⅰ)求证:PH∥平面GED;
(Ⅱ)过点F作平面α,使ED∥平面α,当平面α⊥平面EDG时,设PA与平面α交于点Q,求PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=|2x﹣1|,定义f1(x)=x,fn+1(x)=f(fn(x)),已知函数g(x)=fm(x)﹣x有8个零点,则m的值为( )
A.8
B.4
C.3
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,已知定义在R上的函数在区间内有一个零点, 为的导函数.
(Ⅰ)求的单调区间;
(Ⅱ)设,函数,求证: ;
(Ⅲ)求证:存在大于0的常数,使得对于任意的正整数,且 满足.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】集合A={x|1≤x≤5},B={x|2≤x≤6},
(1)若x∈A,y∈B且均为整数,求x>y的概率.
(2)若x∈A,y∈B且均为实数,求x>y的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com