精英家教网 > 高中数学 > 题目详情

【题目】已知是抛物线上一点, 到直线的距离为 的准线的距离为,且的最小值为

(Ⅰ)求抛物线的方程;

(Ⅱ)直线于点,直线于点,线段的中点分别为,若,直线的斜率为,求证:直线恒过定点.

【答案】(1) ;(2)证明见解析.

【解析】试题分析:(Ⅰ) 的最小值等价于点到直线的距离, ∴,解得,从而可得结果;(Ⅱ)设,由可得,由中点坐标公式以及斜率公式可得的斜率,直线的方程可化为,从而可得结果.

试题解析:(Ⅰ)抛物线的焦点为,由抛物线的定义可得

,其最小值为点到直线的距离, ∴,解得(舍去负值),

∴抛物线的方程为

(Ⅱ)设,由可得, 则,所以 的中点的坐标为

同理可得点的坐标为,则直线的斜率,则

则直线的方程可化为,即,令可得,∴直线恒过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C经过点A(1,3)、B(2,2),并且直线m:3x﹣2y=0平分圆C.
(1)求圆C的方程;
(2)若过点D(0,1),且斜率为k的直线l与圆C有两个不同的交点M、N.
(Ⅰ)求实数k的取值范围;
(Ⅱ)若 =12,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数f(x)=sin(2x+φ)(|φ|< )的图象上的所有点向左平移 个单位长度,得到函数y=g(x)的图象,且g(﹣x)=g(x),则(
A.y=g(x)在(0, )单调递增,其图象关于直线x= 对称
B.y=g(x)在(0, )单调递增,其图象关于直线x= 对称
C.y=g(x)在(0, )单调递减,其图象关于直线x= 对称
D.y=g(x)在(0, )单调递减,其图象关于直线x= 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,PA= ,AB=1.AD=2.∠BAD=120°,E,F,G,H分别是BC,PB,PC,AD的中点.
(Ⅰ)求证:PH∥平面GED;
(Ⅱ)过点F作平面α,使ED∥平面α,当平面α⊥平面EDG时,设PA与平面α交于点Q,求PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=|2x﹣1|,定义f1(x)=x,fn+1(x)=f(fn(x)),已知函数g(x)=fm(x)﹣x有8个零点,则m的值为(
A.8
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,a2=2,an+2=(1+cos2 )an+sin2 ,则该数列的前10项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,已知定义在R上的函数在区间内有一个零点 的导函数.

(Ⅰ)求的单调区间;

(Ⅱ)设,函数,求证:

(Ⅲ)求证:存在大于0的常数,使得对于任意的正整数,且 满足.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={x|1≤x≤5},B={x|2≤x≤6},
(1)若x∈A,y∈B且均为整数,求x>y的概率.
(2)若x∈A,y∈B且均为实数,求x>y的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p: =1表示双曲线方程,命题q:函数f(m)= 有意义.若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

同步练习册答案