精英家教网 > 高中数学 > 题目详情
11.设正项等比数列{an}的前n项的和为Sn,且$\frac{{a}_{n+1}}{{a}_{n}}$<1,若a3+a5=20,a2•a6=64,则S6=(  )
A.63或126B.252C.126D.63

分析 根据a3+a5=20,a3a5=64构造出一元二次方程求得a3和a5,则a1和q可求得,最后求得答案.

解答 解:∵$\frac{{a}_{n+1}}{{a}_{n}}$<1,
∴0<q<1,
∵a2•a6=a3a5=64,a3+a5=20,
∴a3和a5为方程x2-20x+64=0的两根,
∵an>0,0<q<1,
∴a3>a5
∴a3=16,a5=4,
∴q=$\frac{1}{2}$,
∴a1=64,a2=32,a3=16,a4=8,
∴S6=$\frac{64×[1-(\frac{1}{2})^{6}]}{1-\frac{1}{2}}$=126,
故选:C.

点评 本题考查等比数列的求和公式,涉及等比数列的性质和韦达定理,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.对于函数f(x)=ax2+2x-2a,若方程f(x)=0有相异的两根x1,x2
(1)若a>0,且x1<1<x2,求a的取值范围;
(2)若x1-1,x2-1同号,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数z=$\frac{4}{-1-i}$(i是虚数单位),在复平面对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若命题p:?x∈R,cosx≤1,则?p(  )
A.?x0∈R,cosx0>1B.?x∈R,cosx>1C.?x∈R,cos≤1D.?x0∈R,cosx≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一个焦点与抛物线y2=8x的焦点重合,点$P(2,\sqrt{2})$在C上.
(1)求椭圆C的方程;
(2)若椭圆C的一条弦被M(2,1)点平分,求这条弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=-x2-6x-5的值域为(  )
A.[0,4]B.(-∞,4]C.(-∞,4)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数是增函数的是(  )
A.y=-3x-1B.y=x2+1C.y=($\frac{1}{2}$)xD.y=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)在=R上总有导数f(x),定义F(x)=exf(x),G(x)=$\frac{f(x)}{{e}^{x}}$,x∈R(e=2.71828是自然对数的底数)
(1)若f(x)>0,且f(x)+f′(x)<0,x∈R,试分别判断函数F(x)和G(x)的单调性;
(2)若f(x)=x2-3x+3,x∈R
①当x∈[-2,t],(t>1)时,求函数F'(x)的最小值;
②当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为保值区间.设g(x)=F(x)+(x-2)ex,问函数g(x)在(1,+∞)上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设$f(x)=\left\{{\begin{array}{l}{{{log}_3}(x-8)(x≥9)}\\{f(x+6)(x<9)}\end{array}}\right.$,则f(5)的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案