20£®ÒÑÖªº¯Êýf£¨x£©ÔÚ=RÉÏ×ÜÓе¼Êýf£¨x£©£¬¶¨ÒåF£¨x£©=exf£¨x£©£¬G£¨x£©=$\frac{f£¨x£©}{{e}^{x}}$£¬x¡ÊR£¨e=2.71828ÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©
£¨1£©Èôf£¨x£©£¾0£¬ÇÒf£¨x£©+f¡ä£¨x£©£¼0£¬x¡ÊR£¬ÊÔ·Ö±ðÅжϺ¯ÊýF£¨x£©ºÍG£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èôf£¨x£©=x2-3x+3£¬x¡ÊR
¢Ùµ±x¡Ê[-2£¬t]£¬£¨t£¾1£©Ê±£¬Çóº¯ÊýF'£¨x£©µÄ×îСֵ£»
¢Úµ±º¯Êý×Ô±äÁ¿µÄÈ¡ÖµÇø¼äÓë¶ÔÓ¦º¯ÊýÖµµÄÈ¡ÖµÇø¼äÏàͬʱ£¬ÕâÑùµÄÇø¼ä³ÆÎª±£ÖµÇø¼ä£®Éèg£¨x£©=F£¨x£©+£¨x-2£©ex£¬Îʺ¯Êýg£¨x£©ÔÚ£¨1£¬+¡Þ£©ÉÏÊÇ·ñ´æÔÚ±£ÖµÇø¼ä£¿Èô´æÔÚ£¬ÇëÇó³öÒ»¸ö±£ÖµÇø¼ä£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Çó³öº¯ÊýµÄµ¼Êý£¬´Ó¶øÅжϳöF£¨x£©ºÍG£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©¢ÙÇó³öº¯ÊýµÄµ¼Êý£¬µÃµ½º¯ÊýµÄµ¥µ÷Çø¼ä£¬Çó³öº¯ÊýµÄ×îСֵ¼´¿É£»
¢Ú¼ÙÉ躯Êýg£¨x£©ÔÚ£¨1£¬+¡Þ£©ÉÏ´æÔÚ±£ÖµÇø¼ä[a£¬b]£¬¸ù¾Ýº¯ÊýµÄµ¥µ÷ÐԵóöì¶Ü£¬´Ó¶øÖ¤³ö½áÂÛ£®

½â´ð ½â£º£¨1£©¶ÔF£¨x£©=exf£¨x£©Çóµ¼£¬µÃF'£¨x£©=exf£¨x£©+exf'£¨x£©=ex[f£¨x£©+f'£¨x£©]£¬
ÒòΪf£¨x£©+f'£¨x£©£¼0£¬ËùÒÔF'£¨x£©£¼0£¬ËùÒÔF£¨x£©ÔÚRÉÏΪ¼õº¯Êý£®¡­£¨2·Ö£©
¶Ô$G£¨x£©=\frac{f£¨x£©}{e^x}$Çóµ¼£¬µÃ$G'£¨x£©=\frac{{f'£¨x£©{e^x}-f£¨x£©{e^x}}}{{{e^{2x}}}}$=$\frac{f'£¨x£©-f£¨x£©}{e^x}$£®
ÒòΪf£¨x£©£¾0£¬ÇÒf£¨x£©+f'£¨x£©£¼0£¬ËùÒÔf'£¨x£©£¼-f£¨x£©£¼0£¬f'£¨x£©-f£¨x£©£¼-2f£¨x£©£¼0£®
ËùÒÔG'£¨x£©£¼0£¬ËùÒÔG£¨x£©ÔÚRÉÏΪ¼õº¯Êý£®¡­£¨4·Ö£©
£¨2£©¢ÙF£¨x£©=exf£¨x£©=£¨x2-3x+3£©ex£¬Çóµ¼µÃF'£¨x£©=£¨2x-3£©ex+£¨x2-3x+3£©ex=£¨x2-x£©ex=x£¨x-1£©ex£®¡­£¨6·Ö£©
µ±x±ä»¯Ê±£¬F'£¨x£©£¬F£¨x£©µÄ±ä»¯Çé¿öÈçÏÂ±í£º

x-2£¨-2£¬0£©0£¨0£¬1£©1£¨1£¬t£©t
F'£¨x£©+0-0+
F£¨x£©13e-2µÝÔö¨J¼«´óÖµ3µÝ¼õ¨K¼«Ð¡ÖµeµÝÔö¨J£¨t2-3t+3£©et
¡­£¨8·Ö£©
ÒòΪ$13{e^{-2}}=\frac{13}{e^2}£¼\frac{13}{{{{2.5}^2}}}£¼\frac{13}{6}£¼2.2£¼e$£¬ËùÒÔº¯ÊýF£¨x£©µÄ×îСֵΪ13e-2£®¡­£¨9·Ö£©
¢Úº¯Êýg£¨x£©ÔÚ£¨1£¬+¡Þ£©Éϲ»´æÔÚ±£ÖµÇø¼ä£¬Ö¤Ã÷ÈçÏ£º
ÓÉÌâÒ⣬g£¨x£©=£¨x2-3x+3£©ex+£¨x-2£©ex=£¨x-1£©2ex£®
Ç󵼵ã¬g'£¨x£©=£¨2x-2£©ex+£¨x2-2x+1£©ex=£¨x2-1£©ex£®¡­£¨10·Ö£©
¼ÙÉ躯Êýg£¨x£©ÔÚ£¨1£¬+¡Þ£©ÉÏ´æÔÚ±£ÖµÇø¼ä[a£¬b]£¬ÒòΪµ±x£¾1ʱ£¬g'£¨x£©£¾0£¬g£¨x£©ÎªÔöº¯Êý£¬
ËùÒÔ$\left\{\begin{array}{l}g£¨a£©=a\\ g£¨b£©=b\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{£¨a-1£©^2}{e^a}=a\\{£¨b-1£©^2}{e^b}=b\end{array}\right.$£¬Õâ˵Ã÷·½³Ì£¨x-1£©2ex=xÓÐÁ½¸ö´óÓÚ1µÄÏàÒìʵ¸ù£®¡­£¨11·Ö£©
Éè¦Õ£¨x£©=£¨x-1£©2ex-x£¬£¨x£¾1£©£¬Ç󵼵㬦Õ'£¨x£©=£¨x2-1£©ex-1£¬
Éèh£¨x£©=¦Õ'£¨x£©=£¨x2-1£©ex-1£®Ôòh'£¨x£©=£¨x2+2x-1£©ex£®
µ±x£¾1ʱ£¬h'£¨x£©£¾0£¬ËùÒÔh£¨x£©ÔÚ£¨1£¬+¡Þ£©ÉÏΪÔöº¯Êý£®ÓÖh£¨1£©=-1£¼0£¬h£¨2£©=3e2-1£¾0£®
ËùÒÔÔÚ£¨1£¬+¡Þ£©ÉÏ´æÔÚΨһµÄʵÊýx0¡Ê£¨1£¬2£©£¬Ê¹µÃh£¨x0£©=0£¬¼´¦Õ'£¨x0£©=0£®
µ±x¡Ê£¨1£¬x0£©Ê±£¬¦Õ'£¨x0£©£¼0£¬¦Õ£¨x£©Îª¼õº¯Êý£»
µ±x¡Ê£¨x0£¬+¡Þ£©Ê±£¬¦Õ'£¨x0£©£¾0£¬¦Õ£¨x£©ÎªÔöº¯Êý£®
ËùÒÔ¦Õ£¨x£©ÔÚx0´¦È¡µÄ¼«Ð¡Öµ£®¡­£¨13·Ö£©
ÒòΪ¦Õ£¨x0£©£¼¦Õ£¨1£©=-1£¼0£¬¦Õ£¨2£©=e2-2£¾0£®
ËùÒÔ¦Õ£¨x£©ÔÚÇø¼ä£¨1£¬+¡Þ£©ÉÏÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬ÕâÓë·½³Ì£¨x-1£©2ex=xÓÐÁ½¸ö´óÓÚ1µÄÏàÒìʵ¸ùì¶Ü£®
ËùÒÔ¼ÙÉè²»³ÉÁ¢£¬ËùÒÔº¯Êýg£¨x£©ÔÚ£¨1£¬+¡Þ£©Éϲ»´æÔÚ±£ÖµÇø¼ä£®¡­£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔ¡¢×îÖµÎÊÌ⣬¿¼²éµ¼ÊýµÄÓ¦ÓÃÒÔ¼°·ÖÀàÌÖÂÛ˼Ï룬ÊÇÒ»µÀ×ÛºÏÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®SnΪÊýÁÐ{an}µÄǰnÏîºÍ£¬ÒÑÖª${a_n}£¾0£¬4{S_n}=£¨{{a_n}+3}£©£¨{{a_n}-1}£©£¬£¨{n¡Ê{N^*}}£©$£®Ôò{an}µÄͨÏʽan=2n+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÉèÕýÏîµÈ±ÈÊýÁÐ{an}µÄǰnÏîµÄºÍΪSn£¬ÇÒ$\frac{{a}_{n+1}}{{a}_{n}}$£¼1£¬Èôa3+a5=20£¬a2•a6=64£¬ÔòS6=£¨¡¡¡¡£©
A£®63»ò126B£®252C£®126D£®63

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®±È½ÏÏÂÁи÷ÌâÖÐÁ½¸öÊýµÄ´óС£º
£¨1£©log60.8£¬log69.1£»                       
£¨2£©log0.17£¬log0.19£»
£¨3£©log0.15£¬log2.35                        
£¨4£©loga4£¬loga6£¨a£¾0£¬ÇÒa¡Ù1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªf£¨x£©ÊÇRÉÏµÄÆæº¯Êý£¬f£¨1£©=1£¬ÇÒ¶ÔÈÎÒâx¡ÊR¶¼ÓÐf£¨x+4£©=f£¨x£©+f£¨2£©³ÉÁ¢£¬Ôòf£¨2016£©+f£¨2017£©=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª¼¯ºÏA={-2£¬-1£¬0£¬1}£¬B={0£¬1£¬2}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{0£¬1}B£®{0£¬1£¬-1}C£®{-2£¬-1£¬0£¬1£¬2}D£®{-2£¬-1£¬2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSnÂú×ãSn=2an-1£¬µÈ²îÊýÁÐ{bn}Âú×ãb1=1£¬b4=S8£®
£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©Éè${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=4sin¦È£®
£¨¢ñ£©ÇóÇúÏßCµÄ²ÎÊý·½³Ì£»
£¨¢ò£©Èôµã$A£¨{¦Ñ_1}£¬\frac{¦Ð}{6}£©$Óë$B£¨{¦Ñ_2}£¬\frac{¦Ð}{3}£©$ÔÚÇúÏßCÉÏ£¬Çó¡÷OABµÄÃæ»ýÓë|AB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÖ±Ïß3x-4y+1=0ÓëÔ²x2+y2=1£¬ÔòËüÃǵÄλÖùØÏµÎª£¨¡¡¡¡£©
A£®ÏཻÇÒ¹ýÔ²ÐÄB£®Ïཻ²»¹ýÔ²ÐÄC£®ÏàÇÐD£®ÏàÀë

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸