分析 (1)利用Sn=2an-1,再写一式,两式相减,可得数列{an}是以1为首项,2为公比的等比数列,从而可求数列{an}的通项公式,利用等差数列{bn}满足b1=1,b4=S8求出数列的首项与公差,即可求数列{bn}的通项公式.
(2)先化简cn,再根据裂项求和即可求出答案.
解答 解:(1)∵Sn=2an-1,
∴n≥2时,Sn-1=2an-1-1,
∴两式相减可得,an=2an-2an-1,
∴an=2an-1,
n=1时,a1=2a1-1,∴a1=1,
∴数列{an}是以1为首项,2为公比的等比数列,
∴an=2n-1;
设{bn}的公差为d,b1=a1=1,b4=1+3d,
又b4=S2=7,∴d=2.
∴${b_n}=1+(n-1)×2=2n-1(n∈{N^*})$.
(2)${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴${T_n}=\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})=\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}(n∈{N^*})$.
点评 本题考查数列递推式,考查等比数列的判定与通项,裂项求和,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1<x≤3} | B. | {x|-1<x≤4} | C. | {-3,1} | D. | {-1,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,2x>x2 | |
| B. | a+b=0的充要条件是$\frac{a}{b}=-1$ | |
| C. | $?{x_0}∈R,{e^{x_0}}≤0$ | |
| D. | 若x,y∈R,且x+y>2,则x,y至少有一个大于1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $\frac{1}{2}$ | C. | $\frac{17}{24}$ | D. | -$\frac{1}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com