精英家教网 > 高中数学 > 题目详情

已知函数为实常数).
(1)若函数在区间上是增函数,试用函数单调性的定义求实数的取值范围;
(2)设,若不等式有解,求的取值范围.

(1);(2)当时,;当时,

解析试题分析:(1)任取x1、x2∈[2,+∞),且x1<x2,利用函数单调性的定义可知f(x2)-f(x1)>0在区间[2,+∞)上恒成立,从而求出实数m的取值范围;(2)将不等式f(x)≤kx中的k分离出来,然后利用二次函数的性质研究不等式另一侧函数在[,1]上的最小值,从而求出k的取值范围.
(1)由题意,任取,且
,    2分
因为,所以,即,             4分
,得,所以.所以,的取值范围是.  6分
(2)由,得
因为,所以,                                    7分
,则,所以,令
于是,要使原不等式在有解,当且仅当).    9分
因为,所以图像开口向下,对称轴为直线
因为,故当,即时,
,即时,.                  13分
综上,当时,
时,.            14分.
考点:1.不等式的解法;2.奇偶性与单调性的综合;3.两点间的距离公式..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

是定义在上的函数,且,对任意,若经过点的直线与轴的交点为,则称关于函数的平均数,记为,例如,当时,可得,即的算术平均数.
时,的几何平均数;
时,的调和平均数
(以上两空各只需写出一个符合要求的函数即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)本题共有2个小题,第1小题满分6分,第2个小题满分8分。
某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为千元.
(1)写出关于的函数表达式,并求该函数的定义域;
(2)求该储油罐的建造费用最小时的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.

(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2014·郑州模拟)已知函数f(x)=ex+ax,g(x)=ax-lnx,其中a≤0.
(1)求f(x)的极值.
(2)若存在区间M,使f(x)和g(x)在区间M上具有相同的单调性,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。

(1)写出的表达式
(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度,使总淋雨量最少。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据市场分析,广饶县驰中集团某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本(万元)可以看成月产量(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.
(1)写出月总成本(万元)关于月产量(吨)的函数关系;
(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润;
(3)当月产量为多少吨时, 每吨平均成本最低,最低成本是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.设 (max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记的最小值为A,的最大值为B,则(    )

A.16
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a是实数,讨论关于x的方程lg(x-1)+lg(3-x)=lg(a-x)的实数解的个数.

查看答案和解析>>

同步练习册答案