(本小题满分12分)
已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(I)当x=2时,求证:BD⊥EG ;
(II)若以F、B、C、D为顶点的三棱锥的体积记为
,
求
的最大值;
(III)当
取得最大值时,求二面角D-BF-C的余弦值.
[来源:
ZXXK
]
(1)方法一:∵平面
平面
,![]()
![]()
AE⊥EF,∴AE⊥平面
,AE⊥EF,AE⊥BE,
又BE⊥EF,故可如图建立空间坐标系E-xyz. [来源:Zxxk.Com]
,又
为BC的中点,BC=4,
.则A(0,0,2),B(2,0,0),G(2,2,0),D(0,2,2),E(0,0,0),
(-2,2,2),
(2,2,0),
(-2,2,2)
(2,2,0)=0,∴
。
方法二:作DH⊥EF于H,连BH,GH,
由平面
平面
知:DH⊥平面EBCF,
而EG
平面EBCF,故EG⊥DH.
为平行四边形,
且
![]()
,
四边形BGHE为正方形,∴EG⊥BH,BH
DH=H,
故EG⊥平面DBH,
而BD
平面DBH,∴ EG⊥BD.
(或者直接利用三垂线定理得出结果)
(2)∵AD∥面BFC,
所以
![]()
=VA-BFC=![]()
![]()
,
即
时
有最大值为
.
(3)设平面DBF的法向量为
,∵AE=2, B(2,0,0),D(0,2,2),
F(0,3,0),∴![]()
(-2,2,2), [来源:]
则
![]()
![]()
![]()
,
即
,![]()
取
,∴![]()
,
面BCF一个法向量为
,
则cos<
>=
,
由于所求二面角D-BF-C的平面角为钝角,所以此二面角的余弦值为-
.
【解析】略
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com