精英家教网 > 高中数学 > 题目详情
如图正方形ABCD-A1B1C1D1的棱长为1,则AD1与B1C所成的角为
 
;三棱锥B1-ABC的体积为
 
精英家教网
分析:先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可,再根据体积公式求解即可.
解答:精英家教网解:如图,将直线D1A,平移到C1B,显然C1B⊥B1C
则AD1与B1C所成的角为
π
2

V=
1
3
1
2
•1=
1
6

故答案为
π
2
1
6
点评:本小题主要考查异面直线所成的角,以及几何体的体积,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图正方形ABCD,ABEF的边长都是1,而且平面ABCD,ABEF互相垂直.点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<
2
).
(1)求MN的长;
(2)当a为何值时,MN的长最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图正方形ABCD的边长为a,P,Q分别为AB,DA上的点,当△PAQ的周长为2a时,求∠PCQ.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方形ABCD和四边形ADEF所在的平面垂直,FA⊥AD,DE∥FA,且AD=DE=
12
AF=1
,G是FC的中点.
(1)求证:EG⊥平面ACF;
(2)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点.
(1)求证:PA∥平面MBD;
(2)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案