分析:(I)解法1:利用导数确定函数的最小值,即可得出结论;
解法2:利用基本不等式求最值,即可得出结论;
(II)类比函数有下界的定义,看过函数有上界的定义,并可判断(Ⅰ)中的函数在(-∞,0)上有上界;
(III)求导函数,依题意得对?t∈[0,+∞)有
a-≥,分离参数求最值,即可得出结论.
解答:解:(Ⅰ)
解法1:∵
f′(x)=3x2-,由f'(x)=0得
3x2-=0,x
4=16,∵x∈(0,+∞),
∴x=2,-------------------------------(2分)
∵当0<x<2时,f'(x)<0,∴函数f(x)在(0,2)上是减函数;
当x>2时,f'(x)>0,∴函数f(x)在(2,+∞)上是增函数;
∴x=2是函数的在区间(0,+∞)上的最小值点,
f(x)min=f(2)=8+=32∴对?x∈(0,+∞),都有f(x)≥32,-----------------------------------(4分)
即在区间(0,+∞)上存在常数A=32,使得对?x∈(0,+∞)都有f(x)≥A成立,
∴函数
f(x)=x3+在(0,+∞)上有下界.---------------------------(5分)
解法2:∵x>0∴
f(x)=x3+=x3+++≥4=32当且仅当
x3=即x=2时“=”成立
∴对?x∈(0,+∞),都有f(x)≥32,
即在区间(0,+∞)上存在常数A=32,使得对?x∈(0,+∞)都有f(x)≥A成立,
∴函数
f(x)=x3+在(0,+∞)上有下界.]
(Ⅱ)类比函数有下界的定义,函数有上界可以这样定义:
定义在D上的函数f(x),如果满足:对?x∈D,?常数B,都有f(x)≤B成立,则称函数f(x)在D上有上界,其中B称为函数的上界.---------------------------(8分)
设x<0,则-x>0,由(Ⅰ)知,对?x∈(0,+∞),都有f(x)≥32,
∴f(-x)≥32,∵函数
f(x)=x3+为奇函数,∴f(-x)=-f(x)
∴-f(x)≥32,∴f(x)≤-32------------------------------------------(9分)
即存在常数B=-32,对?x∈(-∞,0),都有f(x)≤B,
∴函数
f(x)=x3+在(-∞,0)上有上界.---------------------------(10分)
(Ⅲ)质点在t∈[0,+∞)上的每一时刻的瞬时速度
v=S′(t)=a-----------------(11分)
依题意得对?t∈[0,+∞)有
a-≥∴
a≥+对?t∈[0,+∞)恒成立
令
g(t)=+,
∵函数g(t)在[0,+∞)上为减函数.
∴
g(t)max=g(0)=1+=∴
a≥.------------------------------------------------(14分)