精英家教网 > 高中数学 > 题目详情
设0≤x≤2π,则满足不等式sin(x-
π
6
) >cosx
的x的取值范围是______.
sin(x-
π
6
) >cosx
?
3
2
sinx-
1
2
cosx>cosx?
3
2
sinx-
3
2
cosx>0?
3
sin(x-
π
3
)>0?2kπ<x-
π
3
<2kπ+π?2kπ+
π
3
<x<2kπ+
3
 (k∈Z)
∵0≤x≤2π,∴x∈(
π
3
3
)

故答案为(
π
3
3
)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:
消费金额(元)的范围 [188,388] (388,588] (588,888] (888,1188]
获得奖券的金额(元) 28 58 88 128
根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,然后还能获得对应的奖券金额为28元.于是,该顾客获得的优惠额为:400×0.2+28=108元.设购买商品得到的优惠率=
购买商品获得的优惠额
商品的标价
.试问:
(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)当商品的标价为[100,600]元时,试写出顾客得到的优惠率y关于标价x元之间的函数关系式;
(3)当顾客购买标价不超过600元的商品时,该顾客是否可以得到超过35%的优惠率?若可以,请举一例;若不可以,试说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

为迎接建党90周年,某班开展了一次“党史知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均匀整数)进行统计,制成如图的频率分布表:
序号 分组(分数段) 频数(人数) 频率
1 [0,60) a 0.1
2 [60,75) 15 b
3 [75,90) 20 0.4
4 [90,100] c d
合计 50 1
(Ⅰ)求a,b,c,d的值;
(Ⅱ)决赛规则如下:为每位参加决赛的选手准备四道题目,选手对其依次作答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对一道,则获得二等奖.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于90分的频率的值相同.设该同学决赛中答题个数为X,求X的分布列以及X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场在店庆一周年开展“购物折上折活动”:商场内所有商品按标价的八折出售,折后价格每满500元再减100元.如某商品标价为1500元,则购买该商品的实际付款额为1500×0.8-200=1000(元).设购买某商品得到的实际折扣率=
实际付款额
商品的标价
.设某商品标价为x元,购买该商品得到的实际折扣率为y.
(1)写出当x∈(0,1000]时,y关于x的函数解析式,并求出购买标价为1000元商品得到的实际折扣率;
(2)对于标价在[2500,3500]的商品,顾客购买标价为多少元的商品,可得到的实际折扣率低于
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,按如下方案相应获得第二次优惠:
消费金额(元)的范围 [200,400) [400,500) [500,700) [700,900)
第二次优惠金额(元) 30 60 100 150
根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为600元的商品,则消费金额为480元,480∈[400,500),所以获得第二次优惠金额为60元,获得的优惠总额为:600×0.2+60=180(元).
设购买商品的优惠率=
购买商品获得的优惠总额
商品的标价

试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)设顾客购买标价为x元(x∈[250,1000]) 的商品获得的优惠总额为y元,试建立y关于x的函数关系式;
(3)对于标价在[625,800)(元)内的商品,顾客购买商品的标价的取值范围为多少时,可得到不小于
1
3
的优惠率?(取值范围用区间表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为迎接建党90周年,某班开展了一次“党史知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均匀整数)进行统计,制成如图的频率分布表:
序号 分组(分数段) 频数(人数) 频率
1 [0,60) a 0.1
2 [60,75) 15 b
3 [75,90) 20 0.4
4 [90,100] c d
合计 50 1
(Ⅰ)求a,b,c,d的值;
(Ⅱ)决赛规则如下:为每位参加决赛的选手准备四道题目,选手对其依次作答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对一道,则获得二等奖.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于90分的频率的值相同.设该同学决赛中答题个数为X,求X的分布列以及X的数学期望.

查看答案和解析>>

同步练习册答案