精英家教网 > 高中数学 > 题目详情

(12分)已知函数f(x)=(其中A>0,)的图象如图所示。

(Ⅰ)求A,w及j的值;

(Ⅱ)若tana=2, ,求的值。

 

【答案】

(1)A=2,w=2(2)

【解析】(Ⅰ)由图知A=2,              ……………………1分

T=2()=p,

∴w=2,                     ……………………3分

∴f(x)=2sin(2x+j)

又∵=2sin(+j)=2,

∴sin(+j)=1,

+j=,j=+,(kÎZ)

,∴j=          ……………………6分

由(Ⅰ)知:f(x)=2sin(2x+),

=2sin(2a+)=2cos2a=4cos2a-2…………9分

∵tana=2, ∴sina=2cosa,

又∵sin2a+cos2a=1, ∴cos2a=,

=             ……………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案