精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x+1的反函数是f-1(x),g(x)=log4(3x+1)
(1)用定义证明f-1(x)在定义域上的单调性;
(2)若f-1(x)≤g(x),求x的取值集合D.
(1)∵函数f(x)=2x+1,∴x=log2(f(x)-1),∴f-1(x)=log2(x-1) (x>1),
设 m>n>1,f-1(m)-f-1(n)=
log
m-1
n-1
2

∵m-1>n-1>0,∴
m-1
n-1
>1,
log
m-1
n-1
2
>0,
∴f-1(m)-f-1(n)>0,f-1(m)>f-1(n),
 f-1(x)在其定义域(1,+∞)内是增函数.

(2)∵f-1(x)≤g(x),
∴log2(x-1)≤log4(3x+1),
log(x-1)24
≤log4(3x+1),
x-1>0  
(x-1)2≤ 3x+1 
,1<x≤5,
∴x的取值集合D=(1,5].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案