精英家教网 > 高中数学 > 题目详情
若函数f(x)=
(x+1)0
|x|-x
的定义域是(  )
A、(-∞,-1)
B、(-1,0)
C、(-1,1)
D、(-∞,-1)∪(-1,0)
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数成立的条件,即可求函数的定义域.
解答: 解:要使函数有意义,则
x+1≠0
|x|-x>0

x≠-1
x<0

即x<0且x≠-1,
故函数的定义域为(-∞,-1)∪(-1,0),
故选:D.
点评:本题主要考查函数定义域的求法,根据函数成立的条件是解决此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则
f′(-3)
f′(1)
=(  )
A、-1B、2C、-5D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集 U={1,2,3,4,5,6,7},M={2,3,4,6},N={1,4,5},则(∁UM)∩N 等于(  )
A、{1,2,4,5,7}
B、{1,4,5}
C、{1,5}
D、{1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

给出命题:若cosα=
1
2
,则α=
π
3
.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=20.3,b=log0.50.24,c=0.32,则a,b,c的大小关系正确的是(  )
A、a<b<c
B、b<a<c
C、c<a<b
D、b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知平面向量
ON1
=(a,0),
ON2
=(0,b),其中a,b为[-2,2]上的两个随机实数,定义平面上的点集Ω,Ω1,Φ分别为Ω={P|
OP
=
ON1
+
ON2
},Ω1={Q|
QN1
|=|
QN2
|=
2
且|QP|<1,P∈Ω},Φ:Ω1∪{R|
3
<|
OR
|<2}.若在Ω对应的平面区域内随机取一个点W,则点W落在Φ对应的平面区域内的概率为(  )
A、
π
16
B、1-
64
C、
π
64
D、
64

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
3x-x2
tanx
的定义域为(  )
A、(0,3]
B、(0,π)
C、(0,
π
2
)∪(
π
2
,3]
D、[0,
π
2
)∪(
π
2
,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,E,H分别是棱A1B1,D1C1上的点(点E与B1不重合),且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G.设AB=2AA1=2a,EF=a,B1E=B1F.在长方体ABCD-A1B1C1D1内随机选取一点,则该点取自于几何体A1ABFE-D1DCGH内的概率为(  )
A、
11
16
B、
3
4
C、
13
16
D、
7
8

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y∈R+,不等式
1
x
+
8
4-x
≥m恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案