精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1) 证明:PB∥平面AEC

(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积

【答案】

【解析】

试题()连接BDACO点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;()延长AEM连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E-ACD的体积

试题解析:(1)证明:连接BDAC于点O,连接EO.

因为ABCD为矩形,所以OBD的中点.

EPD的中点,所以EO∥PB.

因为EO平面AECPB平面AEC

所以PB∥平面AEC.

(2)因为PA⊥平面ABCDABCD为矩形,

所以ABADAP两两垂直.

如图,以A为坐标原点,ADAP的方向为xyz轴的正方向,||为单位长,建立空间直角坐标系Axyz,则DE.

B(m00)(m>0),则C(m0)(m0)

n1(xyz)为平面ACE的法向量,

可取n1.

n2(100)为平面DAE的法向量,

由题设易知|cosn1n2|,即

,解得m.

因为EPD的中点,所以三棱锥EACD的高为.三棱锥EACD的体积V××××.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)当时,解不等式

(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科技引领,布局未来科技研发是企业发展的驱动力量.2007~2018年,某企业连续12年累计研发投入达4100亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这12年间的研发投入(单位:十亿元)用图中的条形图表示,研发投入占营收比用图中的折线图表示.根据折线图和条形图,下列结论正确的有(

A.2012年至2013年研发投入占营收比增量相比2017年至2018年研发投入占营收比增量大

B.2013年至2014年研发投入增量相比2015年至2016年研发投入增量小

C.该企业连续12年来研发投入逐年增加

D.该企业连续12年来研发投入占营收比逐年增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展,个人收入的提高,自201911日起,个人所得税起征点和税率的调整,调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额,依照个人所得税税率表,调整前后的计算方法如下表:

个人所得税税率表(调整前)

个人所得税税率表(调整后)

免征额3500

免征额5000

级数

全月应纳税所得额

税率(%

级数

全月应纳税所得额

税率(%

1

不超过1500元部分

3

1

不超过3000元部分

3

2

超过1500元至4500元的部分

10

2

超过3000元至12000元的部分

10

3

超过4500元至9000元的部分

20

3

超过12000元至25000元的部分

20

某税务部门在某公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

收入(元)

人数

30

40

10

8

7

5

1)若某员工2月的工资、薪金等税前收入为7500元时,请计算一下调整后该员工的实际收入比调整前增加了多少?

2)现从收入在的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用表示抽到作为宣讲员的收入在元的人数,表示抽到作为宣讲员的收入在元的人数,设随机变量,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是等边三角形, 边上的动点(含端点),记,.

(1)求的最大值;

(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,菱形所在的平面,中点,上的点.

1)求证:平面平面

2)若的中点,当时,是否存在点,使直线与平面的所成角的正弦值为?若存在,请求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的导函数为,若函数的图象关于直线对称,且.

1)求实数ab的值;

2)若函数恰有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点作斜率为的直线交抛物线于两点.

1)若,求的面积;

2)过点分别作抛物线的两条切线,且直线与直线相交于点,问:点是否在某条定直线上?若在,求该定直线的方程;若不在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆离心率为,四个顶点构成的四边形的面积是4.

(1)求椭圆C的标准方程;

(2)若直线与椭圆C交于PQ均在第一象限,直线OPOQ的斜率分别为,且(其中O为坐标原点).证明:直线l的斜率k为定值.

查看答案和解析>>

同步练习册答案