已知焦点在
轴上的椭圆C1:
=1经过A(1,0)点,且离心率为
.
(I)求椭圆C1的方程;
(Ⅱ)过抛物线C2:
(h∈R)上P点的切线与椭圆C1交于两点M、N,记线段MN与PA的中点分别为G、H,当GH与
轴平行时,求h的最小值.
科目:高中数学 来源: 题型:
(08年厦门外国语学校模拟)(12分)
已知焦点在
轴上的椭圆
是它的两个焦点.
(Ⅰ)若椭圆上存在一点P,使得
试求
的取值范围;
(Ⅱ)若椭圆的离心率为
,经过右焦点
的直线
与椭圆相交于A、B两点,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省安庆市高三模拟考试(三模)理科数学试卷(解析版) 题型:解答题
已知焦点在
轴上的椭圆
和双曲线
的离心率互为倒数,它们在第一象限交点的坐标为
,设直线
(其中
为整数).
(1)试求椭圆
和双曲线
的标准方程;
(2)若直线
与椭圆
交于不同两点
,与双曲线
交于不同两点
,问是否存在直线
,使得向量
,若存在,指出这样的直线有多少条?若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2014届江西南昌八一、洪都、麻丘中学高二上期中数学试卷(解析版) 题型:选择题
已知焦点在
轴上的椭圆的离心率为
,它的长轴长等于圆
的半径,则椭圆的标准方程是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三下学期2月月考理科数学试卷 题型:解答题
(本题满分15分)已知焦点在
轴上的椭圆
过点
,且离心率为
,
为椭圆
的左顶点.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知过点
的直线
与椭圆
交于
,
两点.
(ⅰ)若直线
垂直于
轴,求
的大小;
(ⅱ)若直线
与
轴不垂直,是否存在直线
使得
为等腰三角形?如果存在,求出直线
的方程;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com