精英家教网 > 高中数学 > 题目详情
精英家教网(A)(不等式选讲)不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是
 

(B) (几何证明选讲)如图,已知在△ABC中,∠C=90°,正方形DEFC內接于△ABC,DE∥AC,EF∥BC,AC=1,BC=2,则正方形DEFC的边长等于
 

(C) (极坐标系与参数方程)曲线ρ=2sinθ与ρ=2cosθ相交于A,B两点,则直线AB的方程为
 
分析:(A) 由(|x-4|+|x+5|) 的意义可得最小值等于9,log3(|x-4|+|x+5|)≥2.
(B)设 正方形DEFC的边长等于 b,由Rt△AEF∽Rt△ABC得到对应线段成比列,求出b值.
(C)把曲线 方程化为直角坐标方程,相减即得公共弦所在的直线方程.
解答:解:精英家教网(A) (|x-4|+|x+5|) 表示数轴上的 x到-5和4的距离之和,其最小值等于9,故log3(|x-4|+|x+5|)≥2,
故当a<2时,不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,
实数a的取值范围是a<2.
(B)设 正方形DEFC的边长等于  b,由Rt△AEF∽Rt△ABC得
1-b
1
b
2
,∴b=
2
3

(C)曲线ρ=2sinθ,即 ρ2=2ρsinθ,即 x2+y2-2y=0   ①,
ρ=2cosθ  即 ρ2=2ρcosθ,即 x2+y2-2x=0   ②,
把两曲线的方程  ①、②相减得直线AB的方程  2x-2y=0,即  x-y=0.
故答案为:A:a<2;B:
2
3
;C:x-y=0.
点评:本题考查绝对值不等式的解法,把极坐标方程化为普通方程的方法,利用绝对值得意义是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.(不等式选讲选做题)若不等式|x+1|+|x-2|<a无实数解,则a的取值范围是
 

B.(几何证明选做题)如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PC=
 

C.(极坐标参数方程选做题)曲线
x=cosα
y=1+sinα
(a为参数)与曲线ρ2-2ρcosθ=0的交点个数为
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选讲) 若f(x)=|x-t|+|5-x|的最小值为3,则实数t的值是
 

B.(平面几何选讲) 已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.∠ADF=
 

C.(极坐标与参数方程) 直线
x=1+
4
5
t
y=-1-
3
5
t
(t为参数)被曲线ρ=
2
cos(θ-
π
4
)
所截的弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A.(不等式选讲选做题)如果存在实数x使不等式|x+1|-|x-2|<k成立,则实数k的取值范围是
 

B.(几何证明选讲选做题)如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
7
,AB=BC=3
,则AC的长为
 

C.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线
ρ=2sinθ与ρcosθ=-1的交点的极坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选讲选做题)设函数f(x)=|x-a|-2,若不等式|f(x)|<1的解集为(-2,0)∪(2,4),则实数a=
1
1

B.(几何证明选讲选做题)如右图,已知PB是圆O的切线,A是切点,D是弧AC上一点,若∠BAC=70°,则∠ADC=
110°
110°

C.(坐标系与参数方程)极坐标系中,直线l的极坐标方程为ρsin(θ+
π
6
)=2,则极点在直线l上的射影的极坐标是
(2,
π
3
(2,
π
3

查看答案和解析>>

同步练习册答案