精英家教网 > 高中数学 > 题目详情
设Sn=1+2+3+…+n,n∈N*,则函数f(n)=
Sn
(n+32)Sn+1
的最大值为______.
由题意Sn=1+2+3+…+n=
n(n+1)
2

f(n)=
Sn
(n+32)Sn+1
=
 
n(n+1)
2
(n+32)  ×
(n+2)(n+1)
2
=
n
(n+32)  ×(n+2)
=
1
n+34+
64
n
1
34+16
=
1
50
等号当且仅当n=
64
n
=8
时成立
故答案为
1
50
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Sn=1+2+3+…+n,n∈N*,求f(n)=
Sn(n+32)Sn+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn=1+2+3+…+n,n∈N*,则函数f(n)=
Sn
(n+32)Sn+1
的最大值为(  )
A、
1
20
B、
1
30
C、
1
40
D、
1
50

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn=1+2+3+…+n,n∈N*,则函数f(n)=
Sn(n+32)Sn+1
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

Sn=1-2+3-4+…+(-1)n-1•n,则S2012=
-1006
-1006

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn=1+2+3=…+n,n∈N*,则f(n)=
Sn
(n+7)Sn+1
的最大值为
2
33
2
33

查看答案和解析>>

同步练习册答案