【题目】已知函数
,
.
(1)当
时,方程
在区间
内有唯一实数解,求实数
的取值范围;
(2)对于区间
上的任意不相等的实数
、
,都有
成立,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,已知
,
两个城镇相距20公里,设
是
中点,在
的中垂线上有一高铁站
,
的距离为10公里.为方便居民出行,在线段
上任取一点
(点
与
,
不重合)建设交通枢纽,从高铁站铺设快速路到
处,再铺设快速路分别到
,
两处.因地质条件等各种因素,其中快速路
造价为3百万元/公里,快速路
造价为2百万元/公里,快速路
造价为4百万元/公里, 设
,总造价为
(单位:百万元).
![]()
(1)求
关于
的函数关系式,并指出函数的定义域;
(2)求总造价
的最小值,并求出此时
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个湖的边界是圆心为
的圆,湖的一侧有一条直线型公路
,湖上有桥
(
是圆
的直径).规划在公路
上选两个点
,并修建两段直线型道路
.规划要求:线段
上的所有点到点
的距离均不小于圆
的半径.已知点
到直线
的距离分别为
和
(
为垂足),测得
,
,
(单位:百米).
![]()
(1)若道路
与桥
垂直,求道路
的长;
(2)在规划要求下,
和
中能否有一个点选在
处?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在锐角△ABC中,∠BAC≠60°,过点B、C分别作△ABC外接圆的切线BD、CE,且满足
,直线DE与AB、AC的延长线分别交于点F、G、CF与BD交于点M,CE与BG交于点N.证明:
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某地有三家工厂,分别位于矩形ABCD的顶点A,B以及CD的中点P处,已知AB=20km,CB=10km,为了处理三家工厂的污水,现要在矩形ABCD内(含边界),且与A,B等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,OP,设排污管道的总长为
km.
![]()
(I)设
,将
表示成
的函数关系式;
(II)确定污水处理厂的位置,使三条排污管道的总长度最短,并求出最短值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P—ABCD中,PA⊥平面ABCD,∠DAB=∠ADC=90°,DC=
AB,F,M分别是线段PC,PB的中点.
![]()
(1)在线段AB上找出一点N,使得平面CMN∥平面PAD,并给出证明过程;
(2)若PA=
AB,DC=
AD,求二面角C—AF—D的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com