如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,
,且AC=BC.
(1)求证:
平面EBC;
(2)求二面角
的大小.![]()
(1)祥见解析;(2)
.
解析试题分析:由已知四边形
是正方形,知其两条对角线互相垂直平分,且
,又因为平面
平面
,
平面
,故可以以点
为原点,以过
点平行于
的直线为
轴,分别以直线
和
为
轴和
轴,建立如图所示的空间直角坐标系
;又因为正方形ACDE的边长为2,且三角形ABC是以角C为直角的直角三角形,从而就可以写出点A,B,C,E及点M的空间直角坐标;则(1)求出向量
的坐标,从而可证
,这样就可证明直线AM与平面EBC内的两条相交直线垂直,故得直线AM与平面EBC垂直;(2)由(1)知
是平面EBC的一个法向量,其坐标已求,再设平面EAB的一个法向量为
,则由
且
,可求得平面EAB的一个法向量;从而可求出所求二面角的两个面的法向量夹角的余弦值,由图可知所求二面角为锐二面角,故二面角的余弦值等于两个面的法向量夹角余弦值的绝对值,从而就可求得所求二面角的大小.另本题也可用几何方法求解证明.
试题解析:∵四边形
是正方形 ,
,
∵平面
平面
,
平面
,
∴可以以点
为原点,以过
点平行于
的直线为
轴,
分别以直线
和
为
轴和
轴,建立如图所示的空间直角坐标系
.
设
,则![]()
,
是正方形
的对角线的交点,
.![]()
(1)
,
,
,
,
平面
.
(2) 设平面
的法向量为
,则
且
,
且
.
即
取
,则
, 则
.
又∵![]()
科目:高中数学 来源: 题型:解答题
如图,点
为斜三棱柱
的侧棱
上一点,
交
于点
,
交
于点
.![]()
(1) 求证:
;
(2) 在任意
中有余弦定理:
.
拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知一四棱锥P-ABCD的底面是边长为1的正方形,且侧棱PC⊥底面ABCD,且PC=2,E是侧棱PC上的动点
(1)求四棱锥P-ABCD的体积;
(2)证明:BD⊥AE。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱中
-A BC中,AB
AC, AB=AC=2,
=4,点D是BC的中点.
(1)求异面直线
与
所成角的余弦值;
(2)求平面
与
所成二面角的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
,
为圆柱
的母线,
是底面圆
的直径,
,
分别是
,
的中点,
.
(1)证明:
;
(2)证明:
;
(3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥
内会有被捕的危险,求鱼被捕的概率.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com