分析 (I)设P(t2,2t)(t≠0),设切线的方程为:y-2t=k(x-t2),与抛物线方程联立可得:ky2-4y-4kt2+8t=0,由△=0,解得k=$\frac{1}{t}$.可得切线l的方程为:x=ty-t2,令y=0,可得切线在x轴上的截距.切线方程与椭圆方程联立化为:(3t2+4)y2-6t3y+3t4-12=0,令△>0,解得t的范围即可得出.
(II)由(I)可得:|AB|=$\sqrt{1+{t}^{2}}$$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$4\sqrt{3}•\sqrt{1+{t}^{2}}$$\sqrt{\frac{-{t}^{4}+3{t}^{2}+4}{(3{t}^{2}+4)^{2}}}$,原点O到切线的距离d=$\frac{{t}^{2}}{\sqrt{1+{t}^{2}}}$,可得S=$\frac{1}{2}$|AB|d=$2\sqrt{3}$$\sqrt{\frac{{t}^{4}(-{t}^{4}+3{t}^{2}+4)}{(3{t}^{2}+4)^{2}}}$,令3t2+4=u,通过换元利用函数的单调性即可得出.
解答 解:(I)设P(t2,2t)(t≠0),设切线的方程为:y-2t=k(x-t2),与抛物线方程联立可得:ky2-4y-4kt2+8t=0,
由△=16-16k(-kt2+2t)=0,解得k=$\frac{1}{t}$.
∴切线l的方程为:x=ty-t2,
令y=0,可得切线在x轴上的截距为-t2,
联立$\left\{\begin{array}{l}{x=ty-{t}^{2}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,化为:(3t2+4)y2-6t3y+3t4-12=0,
令△=36t6-12(3t2+4)(t4-4)>0,解得0<t2<4,
∴-4<-t2<0.
∴切线l在x轴上的截距的取值范围是(-4,0).
(II)由(I)可得:y1+y2=$\frac{6{t}^{3}}{3{t}^{2}+4}$,y1y2=$\frac{3{t}^{4}-12}{3{t}^{2}+4}$.
|AB|=$\sqrt{1+{t}^{2}}$|y1-y2|=$\sqrt{1+{t}^{2}}$$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$4\sqrt{3}•\sqrt{1+{t}^{2}}$$\sqrt{\frac{-{t}^{4}+3{t}^{2}+4}{(3{t}^{2}+4)^{2}}}$,
原点O到切线的距离d=$\frac{{t}^{2}}{\sqrt{1+{t}^{2}}}$,
∴S=$\frac{1}{2}$|AB|d=$2\sqrt{3}$$\sqrt{\frac{{t}^{4}(-{t}^{4}+3{t}^{2}+4)}{(3{t}^{2}+4)^{2}}}$,
令3t2+4=u,∵0<t2<4,∴4<u<16.
则S=2$\sqrt{3}$$\sqrt{\frac{(u-4)^{2}(-\frac{(u-4)^{2}}{9}+u)}{{u}^{2}}}$=$\frac{2\sqrt{3}}{9}$$\sqrt{\frac{({u}^{2}-8u+16)(-{u}^{2}+17u-16)}{{u}^{2}}}$=$\frac{2\sqrt{3}}{9}$$\sqrt{-(u+\frac{16}{u})^{2}+25(u+\frac{16}{u})-136}$,
令$y=u+\frac{16}{u}$,4<u<16.∴y在(4,16)上单调递增,可得:8<y<17.
∴S=$\frac{2\sqrt{3}}{9}$$\sqrt{-{y}^{2}+25y-136}$,当y=$\frac{25}{2}$∈(8,17)时,Smax=$\frac{2\sqrt{3}}{9}$$\sqrt{-\frac{625}{4}+\frac{625}{2}-136}$=$\sqrt{3}$.
由$y=u+\frac{16}{u}$=$\frac{25}{2}$,解得u=$\frac{25+3\sqrt{41}}{4}$,有$t=\frac{\sqrt{3+\sqrt{41}}}{2}$<2,
故当$t=\frac{\sqrt{3+\sqrt{41}}}{2}$时,△AOB面积取得最大值$\sqrt{3}$.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆及圆相交弦长问题、一元二次方程的根与系数的关系、三角形面积计算公式、直线与抛物线相切的性质、基本不等式的性质、函数的性质,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | b<c<a | B. | c<b<a | C. | a<c<b | D. | a<b<c |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 种植地编号 | A1 | A2 | A3 | A4 | A5 |
| (x,y,z) | (0,1,0) | (1,2,1) | (2,1,1) | (2,2,2) | (0,1,1) |
| 种植地编号 | A6 | A7 | A8 | A9 | A10 |
| (x,y,z) | (1,1,2) | (2,1,2) | (2,0,1) | (2,2,1) | (0,2,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com