已知A,B 分别为曲线C: +=1(y0,a>0)与x轴的左、右两个交点,直线过点B,且与轴垂直,S为上异于点B的一点,连结AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧的三等分点,试求出点S的坐标;
(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。
⑴⑵存在,使得O,M,S三点共线.
解法一:
(Ⅰ)当曲线C为半圆时,如图,由点T为圆弧的三等分点得∠BOT=60°或120°.
(1)当∠BOT=60°时, ∠SAE=30°.
又AB=2,故在△SAE中,有
(2)当∠BOT=120°时,同理可求得点S的坐标为,综上,
(Ⅱ)假设存在,使得O,M,S三点共线.
由于点M在以SB为直线的圆上,故.
显然,直线AS的斜率k存在且k>0,可设直线AS的方程为.
由
设点
故,从而.
亦即
由得
由,可得即
经检验,当时,O,M,S三点共线. 故存在,使得O,M,S三点共线.
解法二:
(Ⅰ)同解法一.
(Ⅱ)假设存在a,使得O,M,S三点共线.
由于点M在以SO为直径的圆上,故.
显然,直线AS的斜率k存在且K>0,可设直线AS的方程为
由
设点,则有
故
由所直线SM的方程为
O,S,M三点共线当且仅当O在直线SM上,即.
故存在,使得O,M,S三点共线.
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
FB |
AB |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
|PF2|2 |
|PF1| |
A、(1,+∞) |
B、(0,3] |
C、(1,3] |
D、(0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
|
|
π |
4 |
查看答案和解析>>
科目:高中数学 来源:2010年福建省高二第二学期半期考试数学(理科)试题 题型:解答题
(本小题满分14分)
如图所示,已知曲线交于点O、A,直线与曲线、分别交于点D、B,连结OD,DA,AB.
(1)求证:曲边四边形ABOD(阴影部分:OB为抛物线弧)的面积的函数表达式为
(2)求函数在区间上的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com