精英家教网 > 高中数学 > 题目详情
10.如图,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC将梯形CDFE折起,使得平面CDFE⊥平面ABCD.
(1)证明:AC∥平面BEF;
(2)求平面BEF和平面ABCD所成锐角二面角的余弦值.

分析 (Ⅰ)法一:记BF中点为M,AC与BD交点为O,连结MO,ME,推导出四边形OCEM为平行四边形,由此能证明AC∥平面BEF.
法2:以D为原点,DA,DC,DF为x,y,z轴,建立空间直角坐标系D-xyz,利用向量法能证明AC∥平面BEF.
(Ⅱ)求出平面BEF的法向量和平面ABCD 的一个法向量,利用向量法能求出平面BEF和平面ABCD所成锐二面角的余弦值.

解答 证明:(Ⅰ)证法1:如图,记BF中点为M,AC与BD交点为O,连结MO,ME,
由题设知,CE$\underset{∥}{=}$$\frac{1}{2}DF$,MO$\underset{∥}{=}$$\frac{1}{2}DF$,即CE$\underset{∥}{=}$MO,
∴四边形OCEM为平行四边形,
∴EM∥CO,即EM∥AC,
又AC?平面BFE,EM?平面BFE,
∴AC∥平面BEF.…(6分)
证法2:由题设知,DA,DA,DC两两相互垂直,
如图,以D为原点,DA,DC,DF为x,y,z轴,建立空间直角坐标系D-xyz,
则D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),E(0,2,1),F(0,0,2).
设平面BEF的一个法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BE}=0}\\{\overrightarrow{m}•\overrightarrow{BF}=0}\end{array}\right.$,
又$\overrightarrow{BE}=(-2,0,1),\overrightarrow{BF}=(-2,-2,2)$,
∴$\left\{\begin{array}{l}{-2x+z=0}\\{-2x-2y+2z=0}\end{array}\right.$,
取x=1,得$\overrightarrow{m}$=(1,1,2),
又$\overrightarrow{AC}$=(-2,2,0),
∴$\overrightarrow{m}•\overrightarrow{AC}$=0,即$\overrightarrow{m}⊥\overrightarrow{AC}$,
又AC?平面BEF,
∴AC∥平面BEF.…(6分)
解:(Ⅱ)由(Ⅰ)知,平面BEF的法向量$\overrightarrow{m}$=(1,1,2),
平面ABCD 的一个法向量为$\overrightarrow{n}$=(0,0,1),
则cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{6}×\sqrt{1}}$=$\frac{\sqrt{6}}{3}$,
平面BEF和平面ABCD所成锐二面角的余弦值为$\frac{\sqrt{6}}{3}$.…(12分)

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.定义在R上的函数f(x),其导函数是f′(x),若x•f′(x)+f(x)<0,则下列结论一定正确的是(  )
A.3f(2)<2f(3)B.3f(2)>2f(3)C.2f(2)<3f(3)D.2f(2)>3f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在斜三棱柱ABC-A1B1C1中,A1B⊥AC,且A1B=AC=5,AA1=BC=13,且AB=12.
(1)求证:平面ABB1A1⊥平面ACC1A1
(2)求二面角A-BB1-C的正切值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某三棱锥的三视图如图所示,则该三棱锥的体积是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义:max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,若实数x,y满足:|x|≤3,|y|≤3,-4x≤y≤$\frac{2}{3}$x,则max{|3x-y|,x+2y}的取值范围是(  )
A.[$\frac{21}{4}$,7]B.[0,12]C.[3,$\frac{21}{4}$]D.[0,7]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥E-ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE,$AE=DE=\sqrt{6}$,F为线段DE上的一点.
(Ⅰ)求证:平面AED⊥平面ABCD;
(Ⅱ)若二面角E-BC-F与二面角F-BC-D的大小相等,求DF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点P是圆O外的一点,过P作圆O的切线PA,PB,切点为A,B,过P作一割线交圆O于点E,F,若2PA=PF,取PF的中点D,连接AD,并延长交圆于H.
(1)求证:O,A,P,B四点共圆;
(2)求证:PB2=2AD•DH.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,AB是圆O的直径,C为AB的延长线上一点,切线CD交圆O于点D,∠ACD的平分线分别交DB,DA于点E,F.
(1)求证:DE=DF;
(2)若DA=DC,AC=4,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\overrightarrow{a}$,$\overrightarrow{b}$是两个单位向量,且|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|(k>0).
(1)求$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的范围;
(2)当$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为30°时,求实数k的值.

查看答案和解析>>

同步练习册答案