分析 (Ⅰ)法一:记BF中点为M,AC与BD交点为O,连结MO,ME,推导出四边形OCEM为平行四边形,由此能证明AC∥平面BEF.
法2:以D为原点,DA,DC,DF为x,y,z轴,建立空间直角坐标系D-xyz,利用向量法能证明AC∥平面BEF.
(Ⅱ)求出平面BEF的法向量和平面ABCD 的一个法向量,利用向量法能求出平面BEF和平面ABCD所成锐二面角的余弦值.
解答
证明:(Ⅰ)证法1:如图,记BF中点为M,AC与BD交点为O,连结MO,ME,
由题设知,CE$\underset{∥}{=}$$\frac{1}{2}DF$,MO$\underset{∥}{=}$$\frac{1}{2}DF$,即CE$\underset{∥}{=}$MO,
∴四边形OCEM为平行四边形,
∴EM∥CO,即EM∥AC,
又AC?平面BFE,EM?平面BFE,
∴AC∥平面BEF.…(6分)
证法2:由题设知,DA,DA,DC两两相互垂直,
如图,以D为原点,DA,DC,DF为x,y,z轴,建立空间直角坐标系D-xyz,
则D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),E(0,2,1),F(0,0,2).
设平面BEF的一个法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BE}=0}\\{\overrightarrow{m}•\overrightarrow{BF}=0}\end{array}\right.$,
又$\overrightarrow{BE}=(-2,0,1),\overrightarrow{BF}=(-2,-2,2)$,
∴$\left\{\begin{array}{l}{-2x+z=0}\\{-2x-2y+2z=0}\end{array}\right.$,
取x=1,得$\overrightarrow{m}$=(1,1,2),
又$\overrightarrow{AC}$=(-2,2,0),
∴$\overrightarrow{m}•\overrightarrow{AC}$=0,即$\overrightarrow{m}⊥\overrightarrow{AC}$,
又AC?平面BEF,
∴AC∥平面BEF.…(6分)
解:(Ⅱ)由(Ⅰ)知,平面BEF的法向量$\overrightarrow{m}$=(1,1,2),
平面ABCD 的一个法向量为$\overrightarrow{n}$=(0,0,1),
则cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{6}×\sqrt{1}}$=$\frac{\sqrt{6}}{3}$,
平面BEF和平面ABCD所成锐二面角的余弦值为$\frac{\sqrt{6}}{3}$.…(12分)
点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 3f(2)<2f(3) | B. | 3f(2)>2f(3) | C. | 2f(2)<3f(3) | D. | 2f(2)>3f(3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{21}{4}$,7] | B. | [0,12] | C. | [3,$\frac{21}{4}$] | D. | [0,7] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com