精英家教网 > 高中数学 > 题目详情
5.定义:max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,若实数x,y满足:|x|≤3,|y|≤3,-4x≤y≤$\frac{2}{3}$x,则max{|3x-y|,x+2y}的取值范围是(  )
A.[$\frac{21}{4}$,7]B.[0,12]C.[3,$\frac{21}{4}$]D.[0,7]

分析 作出不等式组对应的平面区域,利用作差法求出z的表达式,然后根据平移,根据数形结合即可得到结论.

解答 解:作出不等式组$\left\{\begin{array}{l}{|x|≤3,|y|≤3}\\{-4x≤y≤\frac{2x}{3}}\end{array}\right.$对应的平面区域如图阴影部分.

由y-3x的几何意义为在y轴上的纵截距,
平移直线y=3x,可得经过点(0,0)时,取得最大值0;
经过点(3,-3)时,取得最小值-12.
max{|3x-y|,x+2y}=max{3x-y,x+2y},
由y≤$\frac{2x}{3}$,可得3x-y≥x+2y,
即有z=max{3x-y,x+2y}=3x-y.
显然平移直线y=3x,可得经过点(0,0)时,z取得最小值0;
经过点(3,-3)时,z取得最大值12.
即所求取值范围是[0,12].
故选:B.

点评 本题主要考查线性规划的应用,根据z的几何意义确定对应的直线方程是截距是本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某数学老师对所任教的两个班级各抽取30名学生进行测试,分数分布如表:
分数区间45
[0,30)0.10.2
[30,60)0.20.2
[60,90)0.30.4
[90,120)0.20.1
[120,150]0.20.1
(1)若成绩120分以上为优秀,求从乙班参加测试的成绩在90分以上(含90分)的学生中,随机任取2名学生,恰有1人为优秀的概率;
(2)根据以上数据完成下面的2×2列联表,则犯错概率小于0.1的前提下,是否有足够的把握认为学生的数学成绩优秀与否和班级有关?
优秀不优秀总计
甲班62430
乙班32730
总计95160
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
下面的临界值供参考:
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{lna+lnx}{x}$在[1,+∞)上为减函数,则实数a的取值范围是(  )
A.a≤eB.0<a≤eC.a≥eD.0<a<$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示的多面体是由一个以四边形ABCD为地面的直四棱柱被平面A1B1C1D1所截面成,若AD=DC=2,AB=BC=2$\sqrt{3}$,∠DAB=∠BCD=90°,且AA1=CC1=$\frac{3}{2}$;
(1)求二面角D1-A1B-A的大小;
(2)求此多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系中xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}\right.$(θ为参数),则曲线C是(  )
A.关于x轴对称的图形B.关于y轴对称的图形
C.关于原点对称的图形D.关于直线y=x对称的图形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC将梯形CDFE折起,使得平面CDFE⊥平面ABCD.
(1)证明:AC∥平面BEF;
(2)求平面BEF和平面ABCD所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数y=loga(x+b)(a,b为常数)的图象如图所示,则函数g(x)=b${\;}^{{x}^{2}-2x}$,x∈[0,3]的最大值是(  )
A.1B.bC.b2D.$\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)的图象关于(1,0)对称,当x>1时,f(x)=loga(x-1),且f(3)=-1,若x1+x2<2,(x1-1)(x2-1)<0,则(  )
A.f(x1)+f(x2)<0B.f(x1)+f(x2)>0C.f(x1)+f(x2)可能为0D.f(x1)+f(x2)可正可负

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a1=1,an+1-an=2n-n,求an

查看答案和解析>>

同步练习册答案