精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,a1=1,前n项和为Sn.若数列{Sn+
1
2
}也是等比数列,则Sn等于
1
2
(3n-1)
1
2
(3n-1)
分析:分类讨论,利用等比数列的求和公式,确定数列的通项,利用数列{Sn+
1
2
}是等比数列,求出公比,即可求得结论.
解答:解:当公比为1时,Sn=n,数列{Sn+
1
2
}为数列{n+
1
2
}为公差为1的等差数列,不满足题意;
当公比不为1时,Sn=
1-qn
1-q
,∴Sn+
1
2
=
1-qn
1-q
+
1
2
,Sn+1+
1
2
=
1-qn+1
1-q
+
1
2

Sn+1+
1
2
Sn+
1
2
=
2qn+1+q-3
2qn+q-3
=
q(2qn+q-3)-q2+4q-3
2qn+q-3
=q+
-q2+4q-3
2qn+q-3

∵数列{Sn+
1
2
}是等比数列
∴-q2+4q-3=0
∵q≠1,∴q=3
∴Sn=
1-qn
1-q
=
1-3n
1-3
=
1
2
(3n-1)

故答案为:
1
2
(3n-1)
点评:本题考查等比数列的求和公式,考查等比数列的定义,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案