精英家教网 > 高中数学 > 题目详情
已知p:A={x∈R|x2+ax+1≤0},q:B={x∈R|x2-3x+2≤0},若p是q的充分不必要条件,求实数a的取值范围.
分析:由题意可得A=∅或方程x2+ax+1=0的两根在区间[1,2]内,建立关于a的不等式组解之可得.
解答:解:解不等式可得B={x∈R|x2-3x+2≤0}={x|1≤x≤2},
∵p是q的充分不必要条件,
∴p⇒q,q不能推出p,即A是B的真子集,
可知A=∅或方程x2+ax+1=0的两根在区间[1,2]内,
∴△=a2-4<0,或
△≥0
1≤-
a
2
≤2
f(1)=1+a+1≥0
f(2)=4+2a+1≥0
,解之可得-2≤a<2.
故实数a的取值范围为:-2≤a<2.
点评:本题考查充要条件的判断与利用,得出A=∅或方程x2+ax+1=0的两根在区间[1,2]内是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:存在x∈R,使mx2+1≤0;q:对任意x∈R,恒有x2+mx+1>0.若p或q为假命题,则实数m的取值范围为(  )
A、m≥2B、m≤-2C、m≤-2,或m≥2D、-2≤m≤2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:对?x∈R,f(x)=ax2+bx+c,(a≠0)的值域中不能同时有+∞,-∞;q:?m∈R,使关于x的一元二次方程x2+mx-1=0无实根.若命题  l1:p∨q; l2:p∧q;l3:p∧(?q);l1:?p正确为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:A={x|1≤x<3},q:B={x|x2-ax≤x-a,a∈R},若?p是?q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知p:A={x∈R|x2+ax+1≤0},q:B={x∈R|x2-3x+2≤0},若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案