精英家教网 > 高中数学 > 题目详情
已知函数.
(1)当时,求函数的单调区间;
(2)当时,函数图象上的点都在所表示的平面区域内,不等式恒成立,求实数的取值范围.   
(1)单调递增区间为;递减区间为;(2)

试题分析:(1)先求,解不等式,并和定义域求交集,得单调递增区间;解不等式,并和定义域求交集,得单调递减区间;(2)构造函数
,由题意得,,求,并解的根,讨论根与定义域的位置关系,若根在定义域外,则函数单调,利用单调性求函数的最大值;若根是内点,则将定义域分段,分别考虑导函数符号,判断函数的大致图象,并求最大值.
(1)当时,
,由,得;由,得,故函数的单调递增区间为;递减区间为
(2)因为函数图像上的点都在所表示的平面区域内,则当时,不等式恒成立,即恒成立,设,只需即可.由

(ⅰ)当时,,故,则函数上单调递减,故成立,(ⅱ)当时,令,得,①若,即,函数在区间单调递增,时,,此时不满足条件,②若,即时,则函数上单调递减,在区间单调递增,故当时,,此时不满足条件,
是,由,因为,所以,所以,故函数上单调递减,故成立.
综上所述,实数a的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,证明:
(2)若,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的最大值;
(2)若,求的取值范围.
(3)证明:  +(n

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)是定义在集合M上的函数.若区间D⊆M,且对任意x0∈D,均有f(x0)∈D,则称函数f(x)在区间D上封闭.
(1)判断f(x)=x-1在区间[-2,1]上是否封闭,并说明理由;
(2)若函数g(x)=在区间[3,10]上封闭,求实数a的取值范围;
(3)若函数h(x)=x3-3x在区间[a,b](a,b∈Z,且a≠b)上封闭,求a,b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,其中
(1)若的图像在交点(2,)处的切线互相垂直,
的值;
(2)若是函数的一个极值点,和1是的两个零点,
∈(,求
(3)当时,若的两个极值点,当||>1时,
求证:||

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)若,求的单调区间;
(2)若当时,,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

时,函数的图象大致是

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)讨论函数的极值点;
(2)若对任意的,恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若规定,不等式对一切x∈(0,1]恒成立,则实数m的最大值为(  )
A.0B.2C.D.3

查看答案和解析>>

同步练习册答案