精英家教网 > 高中数学 > 题目详情
19.已知平面四点A,B,C,D满足AB=BC=CD=2,AD=2$\sqrt{3}$,设△ABD,△BCD的面积分别为 S1,S2,则S12+S22的取值范围是(  )
A.$({8\sqrt{3}-12,14}]$B.$({8\sqrt{3}-12,8\sqrt{3}}]$C.(12,14]D.(12,28]

分析 在三角形ABD和三角形BCD中,利用余弦定理表示出BD2,两者相等表示即可得到cosC与cosA的关系式,利用三角形面积公式变形进而表示出S12+S22,得到关于cosC的二次函数,由$2\sqrt{3}-2<BD<4$可求cosC的范围,利用二次函数性质即可求出S12+S22的取值范围.

解答 解:因为:AB=BC=CD=2,AD=2$\sqrt{3}$,
在△ABD中,$B{D^2}=A{B^2}+A{D^2}-2AB•AD•cosA=16-8\sqrt{3}cosA$,
在△BCD中,BD2=BC2+CD2-2BC•CD•cosC=8-8cosC,
所以:$\sqrt{3}cosA-cosC=1$,
所以:$S_1^2=\frac{1}{4}A{B^2}A{D^2}si{n^2}A=12-12{cos^2}A,S_2^2=\frac{1}{4}B{C^2}C{D^2}si{n^2}C=4-4{cos^2}C$,
所以:$S_1^2+S_2^2=12-12{cos^2}A+4-4{cos^2}C=16-4{({cosC+1})^2}-4{cos^2}C=-8{cos^2}C-8cosC+12$,
因为:$2\sqrt{3}-2<BD<4$,
所以:$8-8cosC=B{D^2}∈({16-8\sqrt{3},16})$,
解得:$-1<cosC<\sqrt{3}-1$,
所以:$S_1^2+S_2^2=-8{cos^2}C-8cosC+12∈({8\sqrt{3}-12,14}]$.

点评 此题考查了余弦定理,三角形面积公式,同角三角函数间的基本关系,以及二次函数的性质,熟练掌握余弦定理是解本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.根据二分法原理求解方程x2-4=0得到的框图可称为(  )
A.知识结构图B.组织结构图C.工序流程图D.程序流程图

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设全集U={0,1,2},A={x|x2+ax+b=0},若∁UA={0,1},则实数a的值为(  )
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow a$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow b$=(-$\sqrt{3}$,1),$\overrightarrow c$=$\overrightarrow a$+λ$\overrightarrow b$,则$\overrightarrow c$•$\overrightarrow a$等于(  )
A.λB.C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:?x∈R,sin2x≤1,则(  )
A.¬p:?x0∈R,sin2x0≥1B.¬p:?x∈R,sin2x≥1
C.¬p:?x0∈R,sin2x0>1D.¬p:?x∈R,sin2x>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ=8$\sqrt{2}cos(θ-\frac{3π}{4})$,曲线C2的参数方程为$\left\{\begin{array}{l}x=8cosθ\\ y=3sinθ\end{array}\right.(θ$为参数).
(Ⅰ)将曲线C1的极坐标方程化为直角坐标方程,将曲线C2的参数方程化为普通方程;
(Ⅱ)若P为C2上的动点,求点P到直线l:$\left\{\begin{array}{l}x=3+2t\\ y=-2+t\end{array}\right.(t$为参数)的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足$\frac{sinA}{sinB}$=-$\frac{sinC}{tanC}$.
(1)求$\frac{3{a}^{2}+{b}^{2}}{{c}^{2}}$的值;
(2)若c=4,且△ABC的面积为$\sqrt{3}$,求边a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=lnx与g(x)=$\frac{x}{e}$,则它们的图象交点个数为(  )
A.0B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=2sin2xcosφ+2cos2xsinφ+m(0<φ<$\frac{π}{2}$),且f(x)的图象上的一个最低点为M($\frac{2}{3}π$,-1).
(1)求f(x)的解析式;
(2)已知f($\frac{α}{2}}$)=$\frac{1}{3}$,α∈[0,π],求cosα的值.

查看答案和解析>>

同步练习册答案