精英家教网 > 高中数学 > 题目详情
用定义法证明函数在区间[3,+∞)上为增函数.
证明:设x1<x2,且x1、x2∈[3,+∞),
则f(x1)﹣f(x2)=()﹣()=
∵x1<x2,且x1、x2∈[3,+∞),∴x1﹣x2<0,x1x2>9
<0
∴f(x1)﹣f(x2)<0
∴f(x1)<f(x2
∴函数在区间[3,+∞)上为增函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用定义法证明函数f(x)=x+
9x
在区间[3,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用定义法证明函数数学公式在区间[3,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用定义法证明函数f(x)=x+
9
x
在区间[3,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+.

(1)画出函数的图象,并求其单调区间;

(2)用定义法证明函数在(0,1)上的单调性.

查看答案和解析>>

同步练习册答案