【题目】如图,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=t,建立如图所示的空间直角坐标系O—xyz.
(1)若t=1,求异面直线AC1与A1B所成角的大小;
(2)若t=5,求直线AC1与平面A1BD所成角的正弦值;
(3)若二面角A1—BD—C的大小为120°,求实数t的值.
【答案】(1) .
(2) .
(3) .
【解析】分析:(1)先根据坐标表示向量,,再利用向量数量积求向量夹角,即得异面直线与所成角,(2)先利用方程组解得平面的一个法向量,利用向量数量积得向量夹角余弦值,再根据线面角与向量夹角互余关系得结果,(3)先利用方程组解得平面以及平面的一个法向量,利用向量数量积得法向量夹角余弦值,再根据二面角与向量夹角相等或互补关系得结果.
详解:(1)当时,,,,,,
则,
,
故,
所以异面直线与所成角为.
(2)当时,,,,,,
则,,
设平面的法向量,
则由得,
不妨取,则, 此时,
设与平面所成角为,因为,
则,
所以与平面所成角的正弦值为.
(3)由得,,,
设平面的法向量,
则由得,
不妨取,则, 此时,
又平面的法向量,
故,解得,
由图形得二面角大于,所以符合题意.
所以二面角的大小为,的值为.
科目:高中数学 来源: 题型:
【题目】甲乙两名篮球运动员分别在各自不同的5场比赛所得篮板球数的茎叶图如图所示,已知两名运动员在各自5场比赛所得平均篮板球数均为10.
(1)求x,y的值;
(2)求甲乙所得篮板球数的方差和,并指出哪位运动员篮板球水平更稳定;
(3)教练员要对甲乙两名运动员篮板球的整体水平进行评估.现在甲乙各自的5场比赛中各选一场进行评估,则两名运动员所得篮板球之和小于18的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P为函数f(x)=lnx的图象上任意一点,点Q为圆[x﹣(e+ )]2+y2=1任意一点,则线段PQ的长度的最小值为( )
A.
B.
C.
D.e+ ﹣1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求证:BD⊥平面ADE;
(2)求直线BE和平面CDE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的不等式:|2x﹣m|≤1的整数解有且仅有一个值为2.
(Ⅰ)求整数m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在底面为正方形的四棱锥S﹣ABCD中,SA=SB=SC=SD,异面直线AD与SC所成的角为60°,AB=2.则四棱锥S﹣ABCD的外接球的表面积为( )
A.6π
B.8π
C.12π
D.16π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(,)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=lnx+ +ax(a∈R),g(x)=ex+ .
(1)讨论f(x)的极值点的个数;
(2)若对于x>0,总有f(x)≤g(x).(i)求实数a的取值范围;(ii)求证:对于x>0,不等式ex+x2﹣(e+1)x+ >2成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com