精英家教网 > 高中数学 > 题目详情

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

【答案】D

【解析】

根据yx的线性回归方程为 y=0.85x﹣85.71,则

=0.850,y x 具有正的线性相关关系,A正确;

回归直线过样本点的中心,B正确;

该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确;

该大学某女生身高为 170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,公路AMAN围成一块顶角为α的角形耕地,其中tanα=-2,在该块土地中P处有一小型建筑,经测量,它到公路AMAN的距离分别为3km,km,现要过点P修建一条直线公路BC,将三条公路围成的区域ABC建成一个工业园,为尽量减少耕地占用,问如何确定B点的位置,使得该工业园区的面积最小?并求最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次联欢会要安排个歌舞类节目、个小品类节目和个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)如果当,且时,恒成立,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0 , 且x0>0,则实数a的取值范围是(
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,﹣1)
D.(﹣∞,﹣2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.

(1)证明:AC=AB1
(2)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式的解集是,

(1)求a的值;

(2)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元不足1小时的部分按1小时计算现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.

1若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为,求甲停车付费恰为6元的概率;

若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.

查看答案和解析>>

同步练习册答案