18£®ÒÑÖªº¯Êýf£¨x£©=x+$\frac{a}{x}$-4£¬g£¨x£©=kx+3£®
£¨1£©µ±a=k=1ʱ£¬Çóº¯Êýy=f£¨x£©+g£¨x£©µÄµ¥µ÷µÝÔöÓëµ¥µ÷µÝ¼õÇø¼ä£»
£¨2£©µ±a¡Ê[3£¬4]ʱ£¬º¯Êýf£¨x£©ÔÚÇø¼ä[1£¬m]ÉϵÄ×î´óֵΪf£¨m£©£¬ÊÔÇóʵÊýmµÄȡֵ·¶Î§£»
£¨3£©µ±a¡Ê[1£¬2]ʱ£¬Èô²»µÈʽ|f£¨x1£©|-|f£¨x2£©|£¼g£¨x1£©-g£¨x2£©¶ÔÈÎÒâx1£¬x2¡Ê[2£¬4]£¨x1£¼x2£©ºã³ÉÁ¢£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©½«a=k=1´úÈ뺯Êý£¬Çó³öº¯Êýy=f£¨x£©+g£¨x£©µÄµ¼Êý£¬´Ó¶øÇó³öº¯ÊýµÄµ¥µ÷Çø¼ä¼´¿É£»
£¨2£©½â²»µÈʽf£¨m£©¡Ýf£¨1£©¼´¿É£»
£¨3£©²»µÈʽµÈ¼ÛÓÚF£¨x£©=|f£¨x£©|-g£¨x£©ÔÚ[2£¬4]ÉϵÝÔö£¬ÏÔÈ»F£¨x£©Îª·Ö¶Îº¯Êý£¬½áºÏµ¥µ÷ÐÔ¶Ôÿһ¶Îº¯Êý·ÖÎöÌÖÂÛ¼´¿É£®

½â´ð ½â£º£¨1£©a=k=1ʱ£¬y=f£¨x£©+g£¨x£©=2x+$\frac{1}{x}$-1£¨x¡Ù0£©£¬
y¡ä=2-$\frac{1}{{x}^{2}}$=$\frac{2{x}^{2}-1}{{x}^{2}}$£¨x¡Ù0£©£¬
Áîy¡ä£¾0£¬½âµÃ£ºx£¾$\frac{\sqrt{2}}{2}$»òx£¼-$\frac{\sqrt{2}}{2}$£¬Áîy¡ä£¼0£¬½âµÃ£º-$\frac{\sqrt{2}}{2}$£¼x£¼$\frac{\sqrt{2}}{2}$ÇÒx¡Ù0£¬
¹Êº¯ÊýÔÚ£¨-¡Þ£¬-$\frac{\sqrt{2}}{2}$£©£¬£¨$\frac{\sqrt{2}}{2}$£¬+¡Þ£©µÝÔö£¬ÔÚ£¨-$\frac{\sqrt{2}}{2}$£¬0£©£¬£¨0£¬$\frac{\sqrt{2}}{2}$£©µÝ¼õ£»
£¨2£©¡ßa¡Ê[3£¬4]£¬
¡ày=f£¨x£©ÔÚ£¨1£¬$\sqrt{a}$£©Éϵݼõ£¬ÔÚ£¨$\sqrt{a}$£¬+¡Þ£©ÉϵÝÔö£¬
ÓÖ¡ßf£¨x£©ÔÚÇø¼ä[1£¬m]ÉϵÄ×î´óֵΪf£¨m£©£¬
¡àf£¨m£©¡Ýf£¨1£©£¬½âµÃ£¨m-1£©£¨m-a£©¡Ý0£¬
¡àm¡Ýamax£¬¼´m¡Ý4£»
£¨3£©¡ß|f£¨x1£©|-|f£¨x2£©|£¼g£¨x1£©-g£¨x2£©£¬
¡à|f£¨x1£©|-g£¨x1£©£¼|f£¨x2£©|-g£¨x2£©ºã³ÉÁ¢£¬
ÁîF£¨x£©=|f£¨x£©|-g£¨x£©£¬ÔòF£¨x£©ÔÚ[2£¬4]ÉϵÝÔö£®
¶ÔÓÚF£¨x£©=$\left\{\begin{array}{l}{£¨-1-k£©x-\frac{a}{x}+1£¬x¡Ê[2£¬2+\sqrt{4-a}]}\\{£¨1-k£©x+\frac{a}{x}-7£¬x¡Ê£¨2+\sqrt{4-a}£¬4]}\end{array}\right.$£¬
£¨i£©µ±x¡Ê[2£¬2+$\sqrt{4-a}$]ʱ£¬F£¨x£©=£¨-1-k£©x-$\frac{a}{x}$+1£¬
¢Ùµ±k=-1ʱ£¬F£¨x£©=-$\frac{a}{x}$+1ÔÚ[2£¬2+$\sqrt{4-a}$]ÉϵÝÔö£¬ËùÒÔk=-1·ûºÏ£»
¢Úµ±k£¼-1ʱ£¬F£¨x£©=£¨-1-k£©x-$\frac{a}{x}$+1ÔÚ[2£¬2+$\sqrt{4-a}$]ÉϵÝÔö£¬ËùÒÔk£¼-1·ûºÏ£»
¢Ûµ±k£¾-1ʱ£¬Ö»Ðè $\sqrt{\frac{a}{k+1}}$¡Ý2+$\sqrt{4-a}$£¬¼´ $\sqrt{\frac{1}{k+1}}$¡Ý£¨$\frac{2}{\sqrt{a}}$+$\sqrt{\frac{4}{a}-1}$£©max=2+$\sqrt{3}$£¬
ËùÒÔ-1£¼k¡Ü6-4$\sqrt{3}$£¬´Ó¶øk¡Ü6-4$\sqrt{3}$£»
£¨ii£©µ±x¡Ê£¨2+$\sqrt{4-a}$£¬4]ʱ£¬F£¨x£©=£¨1-k£©x+$\frac{a}{x}$-7£¬
¢Ùµ±k=1ʱ£¬F£¨x£©=$\frac{a}{x}$-7ÔÚ£¨2+$\sqrt{4-a}$£¬4]Éϵݼõ£¬ËùÒÔk=1²»·ûºÏ£»
¢Úµ±k£¾1ʱ£¬F£¨x£©=£¨1-k£©x+$\frac{a}{x}$-7ÔÚ£¨2+$\sqrt{4-a}$£¬4]Éϵݼõ£¬ËùÒÔk£¾1²»·ûºÏ£»
¢Ûµ±k£¼1ʱ£¬Ö»Ðè $\sqrt{\frac{a}{1-k}}$¡Ü2+$\sqrt{4-a}$£¬¼´ $\sqrt{\frac{1}{1-k}}$¡Ü£¨$\frac{2}{\sqrt{a}}$+$\sqrt{\frac{4}{a}-1}$£©min=1+$\sqrt{2}$£¬
ËùÒÔk£¼2$\sqrt{2}$-2£¬
×ÛÉÏ¿ÉÖª£ºk¡Ü6-4$\sqrt{3}$£®

µãÆÀ ±¾ÌâÀûÓú¯ÊýµÄµ¥µ÷ÐÔ½â¾öÓë×îÖµ¡¢²»µÈʽµÄÏà¹ØÎÊÌ⣬¿¼²é·ÖÎö¡¢¼ÆËãÄÜÁ¦ÒÔ¼°·ÖÀàÌÖÂÛµÄ˼Ï룬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔڵȱÈÊýÁÐ{an}ÖУ¬a1=2£¬a3£¬a2+a4£¬a5³ÉµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãb1+$\frac{{b}_{2}}{2}$+¡­+$\frac{{b}_{n}}{n}$=an£¨n¡ÊN*£©£¬{bn}µÄǰnÏîºÍΪSn£¬ÇóʹSn-nan+6¡Ý0³ÉÁ¢µÄÕýÕûÊýnµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªa¡ÊR£¬ÌÖÂÛº¯Êýf£¨x£©=x+$\frac{a}{x}$£¨x£¾0£©µÄµ¥µ÷ÐÔ£¨Ð´³ö¹ý³Ì£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=lnx+ax2-£¨2a+1£©x+1£¬a¡ÊR£®
£¨1£©µ±a=$\frac{1}{4}$ʱ£¬Çóf£¨x£©µÄ¼«Öµ£»
£¨2£©Éèg£¨x£©=ex-x£¬Èô¶ÔÓÚÈÎÒâµÄx1¡Ê£¨0£¬+¡Þ£©£¬x2¡ÊR£¬²»µÈʽf£¨x1£©¡Üg£¨x2£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=ax3+x2£¨a¡ÊR£©ÔÚx=-2´¦È¡µÃ¼«Öµ£¬ÔòaµÄֵΪ$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ¾¥Ò¶Í¼¼Ç¼ÁËÔÚijÏîÌåÓý±ÈÈüÖУ¬Æßλ²ÃÅÐΪһÃûÑ¡ÊÖ´ò³öµÄ·ÖÊý£¬ÔòÈ¥µôÒ»¸ö×î¸ß·ÖºÍÒ»¸ö×îµÍ·Öºó£¬ËùÊ£Êý¾ÝµÄƽ¾ùֵΪ92£¬·½²îΪ2.8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èçͼ£¬ABΪ¡ÑOµÄÖ±¾¶£¬ACÇСÑOÓÚµãA£¬ÇÒAC=2$\sqrt{2}$£¬¹ýCµÄ¸îÏßCMN½»ABµÄÑÓ³¤ÏßÓÚµãD£¬ÈôCM=MN=ND£¬ÔòBDµÄ³¤µÈÓÚ$\frac{2\sqrt{7}}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬Ö±¶þÃæ½ÇD-AB-EÖУ¬ËıßÐÎABCDÊDZ߳¤Îª2µÄÕý·½ÐΣ¬AE=EB£¬FΪCEÉϵĵ㣬ÇÒBF¡ÍÆ½ÃæACE£¬Çó¶þÃæ½ÇB-AC-EµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÇúÏß$\left\{\begin{array}{l}{x=3cos¦Õ}\\{y=\sqrt{5}sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{2}{3}$B£®$\frac{3}{5}$C£®$\frac{3}{2}$D£®$\frac{\sqrt{5}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸