精英家教网 > 高中数学 > 题目详情
乙两艘轮船都要停靠同一个泊位,它们可以在一昼夜(零点至24点)的任意时刻到达,设甲、乙两艘轮船停靠泊位的时间分别是3小时和5小时,则有一艘轮船停靠泊位时必须等待一段时间的概率.
考点:几何概型
专题:概率与统计
分析:由题意可知如两船到达的时间间隔超过了停泊的时间则不需要等待,要求一艘船停靠泊位时必须等待一段时间的概率即计算一船到达的时间恰好另一船还没有离开,此即是所研究的事件.
解答: 解:设甲船在x点到达,乙船在y点到达,必须等待的事件需要满足如下条件
0<x<24
0<y<24
y-x<3
x-y<5

P(A)=
24×24-
1
2
×21×21-
1
2
×19×19
24×24
=
175
576


故答案为:
175
576
点评:考查几何概率模型,考查用图形法求概率,求解此类题的关键是得出所给的事件对应的约束条件,作出符合条件的图象,由图形的测度得出相应的概率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=asinx+bx3+4(a∈R,b∈R),f′(x)为f(x)的导函数,则f(2014)+f(-2014)+f′(2015)-f′(-2015)=(  )
A、0B、2014
C、2015D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log2x,x>0
f(x+3),x≤0
,则f(-4)的值是(  )
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+x2
(1)若函数g(x)=f(x)-ax在定义域内为增函数,求实数a的取值范围;
(2)在(1)的条件下,且a>1,h(x)=e3x-3aex,x∈[0,ln2],求h(x)的极小值;
(3)设F(x)=2f(x)-3x2-k(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且满足2x0=m+n,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

为迎接省运会在我市召开,美化城市,在某主干道上布置系列大型花盆,该圆形花盆直径2米,内部划分为不同区域种植不同花草.如图所示,在蝶形区域内种植百日红,该蝶形区域由四个对称的全等三角形组成,其中一个三角形OAB的顶点O为圆心,A在圆周上,B在半径OQ上,设计要求∠ABO=120°.
(1)请设置一个变量x,写出该蝶形区域的面积S关于x的函数表达式;
(2)x为多少时,该蝶形区域面积S最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,1),
b
=(0,-1),若(
a
b
)∥
a
,则实数λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若x∈[
1
2
,1]时,不等式f(1+xlog2a)≤f(x-2)恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
lgx
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
m
x
有如下性质:如果常数m>0,那么该函数在(0,
m
]上是减函数,在[
m
,+∞)上是增函数.
(Ⅰ)如果函数f(x)=x+
2b
x
(x>0)在(0,4]上是减函数,在[4,+∞)上是增函数,求实数b的值;
(Ⅱ)求函数g(x)=x+
2
x
在x∈[a,a+1](a>0)上的最小值;
(Ⅲ)设常数c∈[1,4],求函数h(x)=x+
c
x
(1≤x≤2)的最大值.

查看答案和解析>>

同步练习册答案