精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=-60,an+1-an=3,(1)求数列{an}的通项公式an和前n项和Sn(2)问数列{an}的前几项和最小?为什么?(3)求|a1|+|a2|+…+|a30|的值.
分析:(1)根据已知条件得到此数列是首项为-60,公差d为3的等差数列,写出等差数列的通项公式,求出其前n项和.
(2)令通项公式大于等于0列出关于n的不等式,求出不等式的解集即可得到n的范围为n大于等于21,得到数列{an}的前几项和最小.
(3)根据负数的绝对值等于其相反数,正数的绝对值等于其本身把所求的式子进行化简,然后前20项提取-1,得到关于前30项的和与前20项和的式子,分别利用等差数列的前n项和的公式求出前20项的和和前30项的和,代入化简得到的式子中即可求出值.
解答:解:(1)因为an+1-an=3,
所以{an}是等差数列,
所以an=-60+3(n-1)=3n-63,
Sn=-60n+
n(n-1)
2
×3=
3
2
n2-
123
2

(2)an≥0,解得n≥21,
所以数列{an}中,前20项为负,第21项为0,从第22项开始为负项,
所以数列{an}的前20或21项的和最小.
(3)|a1|+|a2|+|a3|+…+|a30|
=-(a1+a2+…+a20)+(a21+…+a30)=S30-2S20
=
(-60+90-63)30
2
-(-60+60-63)•20=765.
点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,本题的突破点是令通项公式大于等于0找出此数列从第22项开始变为正数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an=
12
an-1+1(n≥2),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,则
lim
n→∞
(a1+a2+…+an)等于(  )
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,对?n∈N*an+2an+3•2n,an+1≥2an+1,则a2=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)如果一个数列{an}对任意正整数n满足an+an+1=h(其中h为常数),则称数列{an}为等和数列,h是公和,Sn是其前n项和.已知等和数列{an}中,a1=1,h=-3,则S2008=
-3012
-3012

查看答案和解析>>

同步练习册答案