精英家教网 > 高中数学 > 题目详情

圆M经过直线l:2x+y+4=0与圆C:+2x-4y+1=0的交点,且圆M的圆心M到直线2x+6y-5=0的距离为3,求圆M的方程.

答案:
解析:

  设所求圆方程为+2x-4y+1+λ(2x+y+4)=0+2(λ+1)x+(λ-4)y+4λ+1=0

  其圆心坐标为M(-λ-1,),则有:

  解之,得:λ=-11或λ=13.

  代入原所设方程得:所求方程为:

  -20x-15y-43=0或+28x+9y+53=0.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在平面直角坐标系xoy中,圆C经过函数f(x)=
13
x3+x2-3x-9(x∈R)的图象与两坐标轴的交点,C为圆心.
(1)求圆C的方程;
(2)在直线l:2x+y+19=0上有一个动点P,过点P作圆C的两条切线,设切点分别为M,N,
求四边形PMCN面积的最小值及取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州二模)已知圆C1:x2+y2=2和圆C2,直线l与C1切于点M(1,1),圆C2的圆心在射线2x-y=0(x≥0)上,且C2经过坐标原点,如C2被l截得弦长为4
3

(1)求直线l的方程;
(2)求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(0,1),AB边上的中线CD所在的直线方程为2x-2y-1=0,AC边上的高BH所在直线的方程为y=0.
(1)求△ABC的顶点B、C的坐标;
(2)若圆M经过不同的三点A、B、P(m,0),且斜率为1的直线与圆M相切于点P,求圆M的方程;
(3)问圆M是否存在斜率为1的直线l,使l被圆M截得的弦为DE,以DE为直径的圆经过原点.若存在,写出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M经过直线l: 2x+y+4=0与圆C:x2+y2+2x-4y+1=0的交点,且圆M的圆心到直线2x+6y-5=0的距离为,求圆M的方程

查看答案和解析>>

同步练习册答案