精英家教网 > 高中数学 > 题目详情
12.设P(A)=0.7,P(A-B)=0.3,则P($\overline{AB}$)=0.6.

分析 由已知条件,利用公式P(A-B)=P(A)-P(BA)和对立事件的概率计算公式能求出结果.

解答 解:对任意两个事件A,B,有P(A-B)=P(A)-P(BA),
而P(A-B)=0.3,P(A)=0.7,
所以P(BA)=P(AB)=0.4,
所以P($\overline{AB}$)=1-P(AB)=1-0.4=0.6.
故答案为:0.6.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率的计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ex(x2+ax+1)在点(0,f(0))的切线与直线x-2y+6=0垂直,则a=(  )
A.-3B.-2C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)若(x+$\frac{1}{x}$)n(n∈N)展开式中第3项和第7项的二项式系数相等,求展开式中x-2的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列有关命题的说法正确的有(  )
①命题“若x=y,则sinx=siny”的逆命题为真命题;
②命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”;
③“a=-3”是“直线l1:ax+(1-a)y-3=0与直线l2:(a-1)x+(2a+3)y-2=0互相垂直”的充分不必要条件;
④在双曲线C:x2-$\frac{{y}^{2}}{3}$=1上存在两个点满足|PF1|=$\sqrt{2}$|PF2|,其中F1,F2分别为双曲线C的左、右焦点.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某加油站20名员工日销售量的频率分布直方图,如图所示:
(Ⅰ)补全该频率分布直方图在[20,30)的部分,并分别计算日销售量在[10,20),[20,30)的员工数;
(Ⅱ)在日销量为[10,30)的员工中随机抽取2人,求这两名员工日销量在[20,30)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某种型号电子元件的寿命X(以h计)具有概率密度,f(x)=$\left\{\begin{array}{l}{\frac{1500}{{x}^{2}},x>1500}\\{0,其他}\end{array}\right.$,现有一大批此种元件(设各元件损坏与否相互独立),任取5只,问其中至少有2只寿命大于3000h的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.颈椎病是一种退行性病变,多发于中老年人,但现在年轻的患者越来越多,甚至是大学生也出现了颈椎病,年轻人患颈椎病多与工作、生活方式有关,某调查机构为了了解大学生患有颈椎病是否与长期过度使用电子产品有关,在某医院随机的对入院的50名大学生进行了问卷调查,得到了如下的列联表:
  患颈椎病 不患颈椎病 合计
 过度使用 20 5 25
 不过度使用 10 15 25
 合计 30 20 50
(I)是否有99.5%的把握认为大学生患颈锥病与长期过度使用电子产品有关?
(Ⅱ)已知在患有颈锥病的10名不过度使用电子产品的大学生中,有3名大学生又患有胃病,现在从上述的10名大学生中,抽取3名大学生进行其他方面的排查,记选出患胃病的学生人数为?,求?的分布列,数学期望以及方差.
(参考数据与公式:
 P(K2≥k) 0.15 0.10 0.05 0.025 0.0100.005 0.001 
 k 2.072 2.706 3.841 5.024 6.635 7.87910.828 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知函数y=$\frac{1}{{x}^{2}-mx+1}$的定义域为R,求实数m的取值范围;
(2)若关于x的不等式-x2-ax+a-3≤0在[-2,2]上恒成立.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若不等式loga(x2-2x+3)≥1在x∈R上恒成立,则a的取值范围为1<a≤2.

查看答案和解析>>

同步练习册答案