已知函数.
(1)若函数在区间其中a >0,上存在极值,求实数a的取值范围;
(2)如果当时,不等式恒成立,求实数k的取值范围.
(1);(2) .
解析试题分析:(1)由于函数是一个确定的具体的函数,所以它的极值点也是确定的;故我们只须应用导数求出函数的极值点,注意定义域;让极值点属于区间可得到关于a的不等式,从而就可求出实数a的取值范围;(2)显然不等式等价于:因此当时,不等式恒成立其中,所以利用函数的导数求出的最小值即可.
试题解析:(1)因为, x >0,则,
当时,;当时,.
所以在(0,1)上单调递增;在上单调递减,
所以函数在处取得极大值.
因为函数在区间(其中)上存在极值,
所以 解得.
(2)不等式即为 记
所以
令,则,
,
在上单调递增,
,从而,
故在上也单调递增, 所以,所以 .
考点:1.函数的极值与最值;2.不等式恒成立.
科目:高中数学 来源: 题型:解答题
已知函数,函数.
⑴当时,函数的图象与函数的图象有公共点,求实数的最大值;
⑵当时,试判断函数的图象与函数的图象的公共点的个数;
⑶函数的图象能否恒在函数的上方?若能,求出的取值范围;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费(单位:万元)与安装的这种太阳能电池板的面积(单位:平方米)之间的函数关系是为常数).记为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.
(1)试解释的实际意义,并建立关于的函数关系式;
(2)当为多少平方米时,取得最小值?最小值是多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com