| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
分析 bcosC+$\sqrt{3}$bsinC-a-c=0,利用正弦定理化简得:sinBcosC+$\sqrt{3}$sinBsinC-sinA-sinC=0,再利用和差公式、诱导公式、三角形内角和定理化简可得:$\sqrt{3}$sinB=cosB+1,进而得出.
解答 解:在△ABC中,∵bcosC+$\sqrt{3}$bsinC-a-c=0,
利用正弦定理化简得:sinBcosC+$\sqrt{3}$sinBsinC-sinA-sinC=0,
即sinBcosC+$\sqrt{3}$sinBsinC=sinA+sinC=sin(B+C)+sinC=sinBcosC+cosBsinC+sinC=sinBcosC+sinC(cosB+1),
∴$\sqrt{3}$sinB=cosB+1,即sin(B-$\frac{π}{6}$)=$\frac{1}{2}$,
∵0<B<π,∴$(B-\frac{π}{6})$∈$(-\frac{π}{6},\frac{5π}{6})$,
∴B-$\frac{π}{6}$=$\frac{π}{6}$,即B=$\frac{π}{3}$.
故选:B.
点评 本题考查了正弦定理、和差公式、和差公式、诱导公式、三角形内角和定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 24 | B. | 4$\sqrt{10}$ | C. | 14 | D. | 8+4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\sqrt{2},2)$ | B. | $(2,\sqrt{6})$ | C. | $(\sqrt{2},\sqrt{3})$ | D. | $(\sqrt{6},4)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 69π | B. | 24π | C. | 30π | D. | 39π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 使用年限 | 2 | 3 | 4 | 5 | 6 |
| 维修费用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com