精英家教网 > 高中数学 > 题目详情
9.查某市出租车使用年限和该年支出维修费用(万元),得到数据如表:
使用年限23456
维修费用2.23.85.56.57.0
(1)求线性回归方程(结果保留两位小数);
(2)假设每辆出租车每年的毛获利额为14万元,并且每名出租车司机的年收益额不低于4万元.根据线性回归分析,计算该出租车报废年限.(结果保留整数)
参考公式:$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{a=\overline{y}-b\overline{x}}\end{array}\right.$.

分析 (1)根据所给的数据,做出变量x,y的平均数,求出回归系数,即可求线性回归方程;
(3)根据条件,建立不等式,即可得出结论.

解答 解:(1)由题意知$\overline{x}$=$\frac{1}{5}$(2+3+4+5+6)=4,$\overline{y}$=$\frac{1}{5}$(2.2+2.8+5.5+6.5+7.0)=5,
$\sum_{i=1}^{5}$xiyi=112.3,$\sum_{i=1}^{5}$${{x}_{i}}^{2}$=90,
∴$\stackrel{∧}{b}$=$\frac{112.3-5×4×5}{90-5×{4}^{2}}$=1.23,$\stackrel{∧}{a}$=5-1.23×4=0.08
∴线性回归方程为$\stackrel{∧}{y}$=1.23x+0.08
(2)14-1.23x-0.08≥4⇒x≤8.065即报废年限为8年.

点评 本题考查线性回归方程的求解和应用,是一个基础题,解题的关键是正确应用最小二乘法来求线性回归方程的系数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知复数z=$\frac{2+i}{1-2i}$,则z的共轭复数$\overline z$=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某校为了了解学生近视的情况,对四个非毕业年级各班的近视学生人数做了统计,每个年级都有7个班.如果某个年级的每个班的近视人数都不超过5人,则认定该年级为“学生视力保护达标年级”.这四个年级各班近视学生人数情况统计如表:
初一年级平均值为2,方差为2
初二年级平均值为1,方差大于0
高一年级中位数为3,众数为4
高二年级平均值为3,中位数为4
从表中数据可知:一定是“学生视力保护达标年级”的是(  )
A.初一年级B.初二年级C.高一年级D.高二年级

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,a,b,c是角A,B,C的对边,已知bcosC+$\sqrt{3}$bsinC-a-c=0,则角B=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在复平面内,复数$\frac{3i-1}{1+3i}$对应的点的坐标为(  )
A.($\frac{4}{5}$,$\frac{3}{5}$)B.(-1,$\frac{3}{5}$)C.($\frac{3}{5}$,$\frac{4}{5}$)D.($\frac{3}{5}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)设不等式(x-a)(x+a-2)<0的解集为N,$M=\left\{{m|-\frac{1}{4}≤m<2}\right\}$,若x∈N是x∈M的必要条件,求a的取值范围.
(2)已知命题:“?x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.把正整数按一定的规则排成了如图所示的三角形数表,设aij(i,j∈N*)是位于这个三角形数表中从上往下数第i行,从左往右数第j个数,如a42=8,若aij=2015,则i+j=110?.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知定义在R上的偶函数f(x)满足:当x≥0时,f(x)=x3-8,则关于x的不等式f(x-2)>0的解集为{x|x<0或x>4}.

查看答案和解析>>

同步练习册答案