精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2X-1(X≤0)
f(x-1)+1)(x>0)
,把方程f(x)-x=0的根按从小到大的顺序排列成一个数列,则该数列的通项公式为(  )
分析:函数y=f(x)与y=x在(0,1],(1,2],(2,3],(3,4],…,(n,n+1]上的交点依次为(0,0),(1,1),(2,2),(3,3),(4,4),…,(n+1,n+1).即方程f(x)-x=0在(2,3],(3,4],…,(n,n+1]上的根依次为3,4,…n+1.方程f(x)-x=0的根按从小到大的顺序排列所得数列为0,1,2,3,4,…,可得数列通项公式.
解答:解:当0<x≤1时,有-1<x-1<0,则f(x)=f(x-1)+1=2x-1
当1<x≤2时,有0<x-1≤1,则f(x)=f(x-1)+1=2x-2+1,
当2<x≤3时,有1<x-1≤2,则f(x)=f(x-1)+1=2x-3+2,
当3<x≤4时,有2<x-1≤3,则f(x)=f(x-1)+1=2x-4+3,
以此类推,当n<x≤n+1(其中n∈N)时,则f(x)=f(x-1)+1=2x-n-1+n,
所以,函数f(x)=2x的图象与直线y=x+1的交点为:(0,1)和(1,2),
由于指数函数f(x)=2x为增函数且图象下凸,故它们只有这两个交点.
然后①将函数f(x)=2x和y=x+1的图象同时向下平移一个单位,即得到函数f(x)=2x-1和y=x的图象,
取x≤0的部分,可见它们有且仅有一个交点(0,0).
即当x≤0时,方程f(x)-x=0有且仅有一个根x=0.
②取①中函数f(x)=2x-1和y=x图象-1<x≤0的部分,再同时向上和向右各平移一个单位,
即得f(x)=2x-1和y=x在0<x≤1上的图象,此时它们仍然只有一个交点(1,1).
即当0<x≤1时,方程f(x)-x=0有且仅有一个根x=1.
③取②中函数f(x)=2x-1和y=x在0<x≤1上的图象,继续按照上述步骤进行,
即得到f(x)=2x-2+1和y=x在1<x≤2上的图象,此时它们仍然只有一个交点(2,2).
即当1<x≤2时,方程f(x)-x=0有且仅有一个根x=2.
④以此类推,函数y=f(x)与y=x在(2,3],(3,4],…,(n,n+1]上的交点依次为(3,3),(4,4),…(n+1,n+1).
即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…,n+1.
综上所述方程f(x)-x=0的根按从小到大的顺序排列所得数列为:
0,1,2,3,4,…,
其通项公式为:an=n-1;
故选C.
点评:本题考查了数列递推公式的灵活运用,解题时要注意分类讨论思想和归纳总结;本题属于较难的题目,要细心解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案