精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xlnx-
a
2
x2,a∈
R
(Ⅰ)若f(x)在(0,+∞)单调递减,求a的最小值;
(Ⅱ)若f(x)有两个极值点,求a的取值范围.
(Ⅰ)求导函数可得f′(x)=lnx+1-ax.
f(x)在(0,+∞)单调递减当且仅当f′(x)≤0,即?x∈(0,+∞),a≥
lnx+1
x
.①
设g(x)=
lnx+1
x
,则g′(x)=-
lnx
x2

当x∈(0,1)时,g′(x)>0,g(x)单调递增;
当x∈(1,+∞)时,g′(x)<0,g(x)单调递减.
所以g(x)≤g(1)=1,故a的最小值为1.…(5分)
(Ⅱ)①由(Ⅰ)知,当a≥1时,f(x)没有极值点.
②当a≤0时,f′(x)单调递增,f′(x)至多有一个零点,f(x)不可能有两个极值点.…(7分)
③当0<a<1时,设h(x)=lnx+1-ax,则h′(x)=
1
x
-a.
当x∈(0,
1
a
)时,h′(x)>0,h(x)单调递增;
当x∈(
1
a
,+∞)时,h′(x)<0,h(x)单调递减.…(9分)
因为f′(
1
a
)=h(
1
a
)=ln
1
a
>0,f′(
1
e
)=h(
1
e
)=-
a
e
<0,
所以f(x)在区间(
1
e
1
a
)有一极小值点x1.…(10分)
由(Ⅰ)中的①式,有1≥
lnx+1
x
,即lnx≤x-1,则ln
1
a
1
a
-1,
故f′(
2
a2
)=h(
2
a2
)=ln2+2ln
1
a
+1-
2
a
≤ln2+2(
1
a
-1)+1-
2
a
=ln2-1<0.
所以f(x)在区间(
1
a
2
a2
)有一极大值点x2
综上所述,a的取值范围是(0,1).…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案