精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别

PM2.5(微克/立方米)

频数(天)

频率

第一组

(0,15]

4

0.1

第二组

(15,30]

12

0.3

第三组

(30,45]

8

0.2

第四组

(45,60]

8

0.2

第三组

(60,75]

4

0.1

第四组

(75,90)

4

0.1

(1)写出该样本的众数和中位数(不必写出计算过程);

(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;

(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为,求的分布列及数学期望

 

【答案】

(1)众数为22.5微克/立方米, 中位数为37.5微克/立方米.(2)该居民区的环境需要改进.

(3)变量的分布列为

0

1

2

(天),或(天).

【解析】

试题分析:(1)众数为22.5微克/立方米, 中位数为37.5微克/立方米.   …………………4分

(2)去年该居民区PM2.5年平均浓度为(微克/立方米).

因为,所以去年该居民区PM2.5年平均浓度不符合环境空气质量标准,

故该居民区的环境需要改进.       …………………………………………8分

(3)记事件表示“一天PM2.5的24小时平均浓度符合环境空气质量标准”,则.

随机变量的可能取值为0,1,2.且.所以

所以变量的分布列为

0

1

2

(天),或(天)  ……………12分

考点:本题主要考查离散型随机变量的期望;二项分布。

点评:确定分布列及数学期望,计算概率是关键,涉及组合、排列问题,注意公式的正确运用,属中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案