精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2=12,直线l:4x+3y=25.
(1)圆C的圆心到直线l的距离为
5
5

(2)圆C上任意一点P到直线l的距离大于2的概率为
5
6
5
6
分析:(1)根据所给的圆的标准方程,求出圆心,根据点到直线的距离公式,代入有关数据做出点到直线的距离.
(2)本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,根据题意做出符合条件的弧长对应的圆心角是300°,根据几何概型概率公式得到结果.
解答:解:(1)由题意知圆x2+y2=12的圆心是(0,0),
圆心到直线的距离是d=
25
32+42
=5

(2)由题意知本题是一个几何概型,
试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,
满足条件的事件是到直线l的距离大于2,过圆心做一条直线交直线l与一点,
根据上一问可知圆心到直线的距离是5,
在这条垂直于直线l的半径上找到圆心的距离为3的点做半径的垂线,如图所示,|CD|=3
根据弦心距,半径,弦长之间组成的直角三角形得到|CD|2+|AD|2=R2
又由R2=12,则|AD|=
3
,故∠ACD=30°,即∠ACB=60°
则符合条件的弧长对应的圆心角是300°
根据几何概型的概率公式得到P=
300°
360°
=
5
6

故答案为:5;
5
6
点评:本题考查点到直线的距离,考查直线与圆的位置关系,考查几何概型的概率公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案