精英家教网 > 高中数学 > 题目详情
某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价,减少进货量的办法来增加利润,已知这种商品每件销售价提高1元,销售量就要减少10件,问该商场将销售价每件定为多少元时,才能使得每天所赚的利润最多?销售价每件定为多少元时,才能保证每天所赚的利润在300元以上?
4-<x<4+.
设每件提高x元(0≤x≤10),即每件获利润(2+x)元,每天可销售(100-10x)件,设每天获得总利润为y元,由题意有y=(2+x)(100-10x)=-10x2+80x+200=-10(x-4)2+360.所以当x=4时,ymax=360元,即当定价为每件14元时,每天所赚利润最多.
要使每天利润在300元以上,则有-10x2+80x+200>300,即x2-8x+10<0,解得4-<x<4+.故每件定价在(14-)元到(14+)元之间时,能确保每天赚300元以上.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列四个命题:
①方程若有一个正实根,一个负实根,则
②函数是偶函数,但不是奇函数;
③函数的值域是,则函数的值域为
④一条曲线和直线的公共点个数是,则的值不可能是
其中正确的有________________(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设P(x,y)为函数y=x2-1(x>)图象上一动点,记m=,则当m最小时,点P的坐标为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下列各题中的函数f(x)的解析式.
(1) 已知f(+2)=x+4,求f(x);
(2) 已知f=lgx,求f(x);
(3) 已知函数y=f(x)满足2f(x)+f=2x,x∈R且x≠0,求f(x);
(4) 已知f(x)是二次函数,且满足f(0)=1,f(x+1)=f(x)+2x,求f(x).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地方政府在某地建一座桥,两端的桥墩相距m米,此工程只需建两端桥墩之间的桥面和桥墩(包括两端的桥墩).经预测,一个桥墩的费用为256万元,相邻两个桥墩之间的距离均为x,且相邻两个桥墩之间的桥面工程费用为(1+)x万元,假设所有桥墩都视为点且不考虑其他因素,记工程总费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=1280米时,需要新建多少个桥墩才能使y最小?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=x3cosx+1.若f(a)=11,则f(-a)=   

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x2+lnx4的零点所在的区间是(   )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,若,则的大小关系为___________.

查看答案和解析>>

同步练习册答案