精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3+
1
2
ax2+2bx(a,b∈R)
,且函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则
a2+b2+6a+9
的取值范围是
(
2
2
,2)
(
2
2
,2)
分析:三次函数导函数是二次函数,开口向上,一根在区间(0,1)内,另一根在区间(1,2)内,利用导函数可建立关于a,b的不等式,利用线性规划的知识可以求出取值范围.
解答:解:f′(x)=x2+ax+2b,由题意,
2b>0
1+a+2b<0
4+2a+2b>0

a2+b2+6a+9
的几何意义是点(a,b)与(-3,0),
利用点(a,b)所确定的区域可求得其取值范围是(
2
2
,2)

故答案为(
2
2
,2)
点评:利用函数在区间内取极值转化为导数为0的根在所在区间内是解题的关键,同时正确得出可行域,利用目标函数的几何意义解题是处理这道问题的技巧所在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案