【题目】已知直线l的参数方程为
(t为参数),圆C的参数方程为
(θ为常数).
(1)求直线l和圆C的普通方程;
(2)若直线l与圆C有公共点,求实数a的取值范围.
【答案】
(1)解:直线l的参数方程为
,消去t可得2x﹣y﹣2a=0;
圆C的参数方程为
,两式平方相加可得x2+y2=16
(2)解:圆心C(0,0),半径r=4.
由点到直线的距离公式可得圆心C(0,0)到直线L的距离d=
.
∵直线L与圆C有公共点,∴d≤4,即
≤4,解得﹣2
≤a≤2 ![]()
【解析】(1)消去参数,把直线与圆的参数方程化为普通方程;(2)求出圆心到直线的距离d,再根据直线l与圆C有公共点d≤r即可求出.
【考点精析】解答此题的关键在于理解直线的参数方程的相关知识,掌握经过点
,倾斜角为
的直线
的参数方程可表示为
(
为参数),以及对圆的参数方程的理解,了解圆
的参数方程可表示为
.
科目:高中数学 来源: 题型:
【题目】已知数列
,若对于任意
数列
满足
,则称数列
为“
数列”.
(Ⅰ)已知数列:
,
,
是“
数列”,求实数
的取值范围.
(Ⅱ)是否存在首项为
的等差数列
为“
数列”,且前
项和
满足
,若存在,求出
的通项公式,若不存在,请说明理由;
(Ⅲ)已知各项均为正整数的等比数列
是“
数列”,数列
不是“
数列”,若数列
,试判断数列
是否“
数列”,并且说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C1的参数方程为
(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+
)=2
.
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了如下20组随机数:
5727 0293 7140 9857 0347
4373 8636 9647 1417 4698
0371 6233 2616 8045 6011
3661 9597 7424 6710 4281
据此估计,该射击运动员射击4次至少击中3次的概率为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某百货公司1~6月份的销售量与利润的统计数据如表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售量x/万件 | 10 | 11 | 13 | 12 | 8 | 6 |
利润y/万元 | 22 | 25 | 29 | 26 | 16 | 12 |
(1)根据2~5月份的统计数据,求出y关于x的回归直线方程
x+
;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自2017年2月底,90多所自主招生试点高校将陆续出台2017年自主招生简章,某校高三年级选取了在期中考试中成绩优异的100名学生作为调查对象,对是否准备参加2017年的自主招生考试进行了问卷调查,其中“准备参加”“不准备参加”和“待定”的人数如表:
准备参加 | 不准备参加 | 待定 | |
男生 | 30 | 6 | 15 |
女生 | 15 | 9 | 25 |
(1)在所有参加调查的同学中,在三种类型中用分层抽样的方法抽取20人进行座谈交流,则在“准备参加”“不准备参加”和“待定”的同学中应各抽取多少人?
(2)在“准备参加”的同学中用分层抽样方法抽取6人,从这6人中任意抽取2人,求至少有一名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
,侧面
是边长为2的正三角形,且与底面垂直,底面
是
的菱形,
为
的中点.
![]()
(1)在棱
上是否存在一点
,使得
,
,
,
四点共面?若存在,指出点
的位置并说明;若不存在,请说明理由;
(2)求点
平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,
]
(1)求C的参数方程;
(2)设点D在半圆C上,半圆C在D处的切线与直线l:y=
x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com