精英家教网 > 高中数学 > 题目详情
已知f(x)=log2(1+x4)-
1+mx1+x2
(x∈R)是偶函数.
(Ⅰ)求实常数m的值,并给出函数f(x)的单调区间(不要求证明);
(Ⅱ)k为实常数,解关于x的不等式:f(x+k)>f(|3x+1|).
分析:(Ⅰ)由偶函数的定义,取特殊值得关于m的方程f(-1)=f(1),解得m=0,最后检验所求出的值符合题意;
(Ⅱ)根据函数的单调性,将欲求解的不等式转化为|x+k|>|3x+1|,等价于不等式(x+k)2>(3x+1)2的求解,再根据相应方程根的情况讨论k值,从而得出不等式的解集.
解答:解:(Ⅰ)由题意得:f(-1)=1-
1-m
2
f(1)=1-
1+m
2

函数为偶函数,所以f(-1)=f(1),解得m=0
检验:当m=0时,f(x)=log2(1+x4)-
1
1+x2
,f(-x)=f(x)成立,函数为偶函数
函数在区间(-∞,0)上是减函数,在区间(0,+∞)上是增函数
(Ⅱ)由(1)的单调性,可得f(x+k)>f(|3x+1|)等价于x+k>|3x+1|≥0或x+k<-|3x+1|<0,
转化为(x+k)2>(3x+1)2成立,因式分解为(4x+k+1)(2x-k+1)<0
讨论①当k=
1
3
时,不等式的解集为空集;
②当k<
1
3
时,
k-1
2
-k-1
4
,不等式的解集为(
k-1
2
-k-1
4
);
③当k>
1
3
时,
k-1
2
-k-1
4
,不等式的解集为(
-k-1
4
k-1
2

综上所述,当k=
1
3
时,不等式的解集为空集;当k<
1
3
时,不等式的解集为(
k-1
2
-k-1
4
);
k>
1
3
时,不等式的解集为(
-k-1
4
k-1
2
).
点评:考查了函数的单调性与奇偶性,同时考查了含有参数的不等式的求解,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,则f(f(-4))的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log(2x+1)在(-,0)内恒有f(x)>0,则a的取值范围是

A.a>1

B.0<a<1

C.a<-1或a>1

D.-a<-1或1<a

查看答案和解析>>

科目:高中数学 来源:2013届内蒙古巴彦淖尔市中学高二下期中文科数学试卷(解析版) 题型:解答题

已知f(x)=log  (a>0且a≠1).

(1)求f(x)的 定义域;

(2)判断f(x)的奇偶性并予以证明.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=
log 4 x ,x>0
1
2
 ) x ,x≤0
,则f(f(-4))的值为(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log a (a>0, 且a≠1)

求f(x)的定义域

求使 f(x)>0的x的取值范围.

查看答案和解析>>

同步练习册答案