精英家教网 > 高中数学 > 题目详情
13.函数y=log2(x2+2x-3)的单调递减区间为(  )
A.(-∞,-3)B.(-∞,-1)C.(1,+∞)D.(-3,-1)

分析 先求出函数的定义域,再由复合函数的单调性求单调减区间.

解答 解:∵x2+2x-3>0,
∴x>1或x<-3;
又∵y=x2+2x-3在(-∞,-1]上是减函数,在[-1,+∞)上是增函数;
且y=log2x在(0,+∞)上是增函数;
∴函数y=log2(x2+2x-3)的单调递减区间为(-∞,-3);
故选:A.

点评 本题考查了复合函数的单调区间的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2-x+4.
(1)若函数g(x)=lgf(x)在区间[1,+∞)上单调递增,求实数a的取值范围;
(2)设函数h(x)=x2-(a+2)x-2(a+4),若存在两个非负整数m,n(0≤m<n),使得函数f(x)与h(x)在区间(m,n)上恒有f(x)<0且h(x)<0成立,求n的最大值,及n取最大值时a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=sin($\frac{4}{3}$x-sinx)在[0,π]上的值域为[-$\frac{\sqrt{3}}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)在区间[-a,a]上具有二阶连续的导数,a>0,f(0)=0.证明:在(-a,a)内至少存在一点η,使a3f″(η)=3${∫}_{-a}^{a}f(x)dx$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\underset{lim}{n→∞}$nan=5,求$\underset{lim}{n→∞}$(2-3n)an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求g(x)=(3-x)•(2x-1)($\frac{1}{2}<x<3$)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知动点C与两定点A(0,0),B(3,0)的距离的比为$\frac{1}{2}$,则△ABC面积的最大值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.求直线l1:2x-y-2=0关于直线L:x-y-1=0对称的直线l2的方程为x-2y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.命题“设a、b、c∈N*,若c能整除ab,则a、b中至少有一个是c的倍数”是假命题(填写“真”或“假”),理由是a=4,b=8,c=16,c能整除ab,a,b都不是c的倍数.

查看答案和解析>>

同步练习册答案