【题目】过曲线C1:
(a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,直线F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为( )
A.
B.
C.
D.![]()
【答案】D
【解析】
设双曲线的右焦点为F2,则F2的坐标为(c,0),由题意知F2也是C3的焦点,所以C3:y2=4cx.连接OM,NF2,因为O为F1F2的中点,M为F1N的中点,所以OM为△NF1F2的中位线,所以OM∥NF2.因为|OM|=a,所以|NF2|=2a.又NF2⊥NF1,|F1F2|=2c,所以|NF1|=2b.设N(x,y),则由抛物线的定义可得|NF2|=x+c=2a,所以x=2a-c.过点F1作x轴的垂线,点N到该垂线的距离为2a,由y2+4a2=4b2,即4c(2a-c)+4a2=4(c2-a2),得e2-e-1=0,解得e=
(负值舍去),故选D.
科目:高中数学 来源: 题型:
【题目】现给出两个条件:①
,②
,从中选出一个条件补充在下面的问题中,并以此为依据求解问题:(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在
中,
分别为内角
所对的边( ).
(1)求
;
(2)若
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c.已知asin(A+B)=csin
.
(1)求A;
(2)求sinBsinC的取值范围;
(3)若△ABC的面积为
,周长为8,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知多面体ABCDEF中,四边形ABFE为正方形,
,
,G为AB的中点,
.
![]()
(1)求证:
平面CDEF;
(2)求平面ACD与平面BCF所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)椭圆
(
)的上顶点为
,
是
上的一点,以
为直径的圆经过椭圆
的右焦点
.
(1)求椭圆
的方程;
(2)动直线
与椭圆
有且只有一个公共点,问:在
轴上是否存在两个定点,它们到直线
的距离之积等于
?如果存在,求出这两个定点的坐标;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一次考试共有12道选择题,每道选择题都有4个不同的选项,其中有且只有一个是正确的,评分标准规定:每题只选一个选项,答对得5分,不答或答错得0分,某考生已确定有8道题的答案是正确的,其余题中,有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因为不理解题意只好乱猜,请求出该考生:
(1)得60分的概率;
(2)所得分数
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长方体
中,底面ABCD的长AB=4,宽BC=4,高
=3,点M,N分别是BC,
的中点,点P在上底面
中,点Q在
上,若
,则PQ长度的最小值是
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com